• Under the general heading "Algebra and Theory of Numbers" occur the subheadings "Elements of Algebra," with the topics rational polynomials, permutations, &c., partitions, probabilities; "Linear Substitutions," with the topics determinants, &c., linear substitutions, general theory of quantics; "Theory of Algebraic Equations," with the topics existence of roots, separation of and approximation to, theory of Galois, &c. "Theory of Numbers," with the topics congruences, quadratic residues, prime numbers, particular irrational and transcendental numbers.

• Under the general heading "Algebra and Theory of Numbers" occur the subheadings "Elements of Algebra," with the topics rational polynomials, permutations, &c., partitions, probabilities; "Linear Substitutions," with the topics determinants, &c., linear substitutions, general theory of quantics; "Theory of Algebraic Equations," with the topics existence of roots, separation of and approximation to, theory of Galois, &c. "Theory of Numbers," with the topics congruences, quadratic residues, prime numbers, particular irrational and transcendental numbers.

• There are 20 thematic headings which, in most cases, are further divided into subheadings.

• E-Yearbook- This site offers a listing of states with subheadings from specific high schools.

• Bullets, lists, and subheadings are used to visually separate information.

• Under the general heading "Analysis" occur the subheadings "Foundations of Analysis," with the topics theory of functions of real variables, series and other infinite processes, principles and elements of the differential and of the integral calculus, definite integrals, and calculus of variations; "Theory of Functions of Complex Variables," with the topics functions of one variable and of several variables; "Algebraic Functions and their Integrals," with the topics algebraic functions of one and of several variables, elliptic functions and single theta functions, Abelian integrals; "Other Special Functions," with the topics Euler's, Legendre's, Bessel's and automorphic functions; "Differential Equations," with the topics existence theorems, methods of solution, general theory; "Differential Forms and Differential Invariants," with the topics differential forms, including Pfaffians, transformation of differential forms, including tangential (or contact) transformations, differential invariants; "Analytical Methods connected with Physical Subjects," with the topics harmonic analysis, Fourier's series, the differential equations of applied mathematics, Dirichlet's problem; "Difference Equations and Functional Equations," with the topics recurring series, solution of equations of finite differences and functional equations.

• Under the general heading "Geometry" occur the subheadings "Foundations," with the topics principles of geometry, non-Euclidean geometries, hyperspace, methods of analytical geometry; "Elementary Geometry," with the topics planimetry, stereometry, trigonometry, descriptive geometry; "Geometry of Conics and Quadrics," with the implied topics; "Algebraic Curves and Surfaces of Degree higher than the Second," with the implied topics; "Transformations and General Methods for Algebraic Configurations," with the topics collineation, duality, transformations, correspondence, groups of points on algebraic curves and surfaces, genus of curves and surfaces, enumerative geometry, connexes, complexes, congruences, higher elements in space, algebraic configurations in hyperspace; "Infinitesimal Geometry: applications of Differential and Integral Calculus to Geometry," with the topics kinematic geometry, curvature, rectification and quadrature, special transcendental curves and surfaces; "Differential Geometry: applications of Differential Equations to Geometry," with the topics curves on surfaces, minimal surfaces, surfaces determined by differential properties, conformal and other representation of surfaces on others, deformation of surfaces, orthogonal and isothermic surfaces.

• thematic headings which, in most cases, are further divided into subheadings.

• In this case, it is helpful to the reader if different sections of the text are divided up using subheadings and/or bullets to make it easier to read.

• The Owl at Purdue has posted a sample memo that includes subheadings and bullet points.

• This format allows you to highlight all of the different functional skills you learned while student teaching under separate subheadings, instead of simply listing "Student Teaching" as one item on a list of previous jobs.

• While these subheadings may vary depending on the nature of the report, bullet points and headings are always useful to provide the reader with the ability to skim the report and still understand the key points.

• While these subheadings may vary depending on the nature of the report, bullet points and headings are always useful to provide the reader with the ability to skim the report and still understand the key points.

• Simply drop your details into the body under each of the individual subheadings.

• Other paragraphs will contain additional important information, logically grouped under subheadings.

• One of the first things you'll notice about the site is that there are lots of subheadings in Italian, though you can click on the "English" option in the upper right and get most of the site in that language.

• Under the general heading "Fundamental Notions" occur the subheadings "Foundations of Arithmetic," with the topics rational, irrational and transcendental numbers, and aggregates; "Universal Algebra," with the topics complex numbers, quaternions, ausdehnungslehre, vector analysis, matrices, and algebra of logic; and "Theory of Groups," with the topics finite and continuous groups.

• Under the general heading "Analysis" occur the subheadings "Foundations of Analysis," with the topics theory of functions of real variables, series and other infinite processes, principles and elements of the differential and of the integral calculus, definite integrals, and calculus of variations; "Theory of Functions of Complex Variables," with the topics functions of one variable and of several variables; "Algebraic Functions and their Integrals," with the topics algebraic functions of one and of several variables, elliptic functions and single theta functions, Abelian integrals; "Other Special Functions," with the topics Euler's, Legendre's, Bessel's and automorphic functions; "Differential Equations," with the topics existence theorems, methods of solution, general theory; "Differential Forms and Differential Invariants," with the topics differential forms, including Pfaffians, transformation of differential forms, including tangential (or contact) transformations, differential invariants; "Analytical Methods connected with Physical Subjects," with the topics harmonic analysis, Fourier's series, the differential equations of applied mathematics, Dirichlet's problem; "Difference Equations and Functional Equations," with the topics recurring series, solution of equations of finite differences and functional equations.

• Under the general heading "Geometry" occur the subheadings "Foundations," with the topics principles of geometry, non-Euclidean geometries, hyperspace, methods of analytical geometry; "Elementary Geometry," with the topics planimetry, stereometry, trigonometry, descriptive geometry; "Geometry of Conics and Quadrics," with the implied topics; "Algebraic Curves and Surfaces of Degree higher than the Second," with the implied topics; "Transformations and General Methods for Algebraic Configurations," with the topics collineation, duality, transformations, correspondence, groups of points on algebraic curves and surfaces, genus of curves and surfaces, enumerative geometry, connexes, complexes, congruences, higher elements in space, algebraic configurations in hyperspace; "Infinitesimal Geometry: applications of Differential and Integral Calculus to Geometry," with the topics kinematic geometry, curvature, rectification and quadrature, special transcendental curves and surfaces; "Differential Geometry: applications of Differential Equations to Geometry," with the topics curves on surfaces, minimal surfaces, surfaces determined by differential properties, conformal and other representation of surfaces on others, deformation of surfaces, orthogonal and isothermic surfaces.