• Conversely, if the kinetic energy T is expressed as a quadratic function of x, x x3, y1, y2, y3, the components of momentum, the partial differential coefficient with respect to a momentum component will give the component of velocity to correspond.

• Thus if T is expressed as a quadratic function of U, V, W, P, Q, R, the components of momentum corresponding are dT dT dT (I) = dU + x2=dV, x3 =dW, dT dT dT Yi dp' dQ' y3=dR; but when it is expressed as a quadratic function of xi, 'x2, x3, yi, Y2, Y3, U = d, V= dx, ' w= ax dT Q_ dT dT dy 1 dy2 dy The second system of expression was chosen by Clebsch and adopted by Halphen in his Fonctions elliptiques; and thence the dynamical equations follow X = dt x2 dy +x3 d Y = ..., Z ..., (3) = dt1 -y2?y - '2dx3+x3 ' M =..

• It follows from §§ 48 and 51 that, if V is a solid figure extending from a plane K to a parallel plane L, and if the area of every cross-section parallel to these planes is a quadratic function of the distance of the section from a fixed plane parallel to them, Simpson's formula may be applied to find the volume of the solid.

• In the case of the sphere, for instance, whose radius is R, the area of the section at distance x from the centre is lr(R 2 -x 2), which is a quadratic function of x; the values of So, Si, and S2 are respectively o, 7rR 2, and o, and the volume is therefore s.

• By drawing Ac and Ad parallel to BC and BD, so as to meet the plane through CD in c and d, and producing QP and RS to meet Ac and Ad in q and r, we see that the area of Pqrs is (x/h - x 2 /h 2) X area of cCDd; this also is a quadratic function of x.