# Multinomial sentence example

multinomial

- A multinomial consisting of two or of three terms is a binomial or a trinomial.
- Now log (1+ï¿½X1 +/22X2+/ï¿½3X3 +ï¿½ï¿½ï¿½) =E log (1+/2aix1+22aix2-1-/23ax3+...) whence, expanding by the exponential and multinomial theorems, a comparison of the coefficients of ï¿½n gives (n) (-)v1+v2+v3+..
- An expression denoting that two or more monomials are to be added or subtracted is a multinomial or polynomial, each of the monomials being a term of it.
- In the same way we have (A-a) 2 =A 2 -2Aa+a 2, (A-a)3 = A 3 -3A 2 a+3Aa 2 -a 3, ..., so that the multinomial equivalent to (A-a)" has the same coefficients as the multinomial equivalent to (A+a)", but with signs alternately + and -.
- The multinomial which is equivalent to (A= a)", and has its terms arranged in ascending powers of a, is called the expansion of (A= a) n.Advertisement
- We know that (A+a)" is equal to a multinomial of n+I terms with unknown coefficients, and we require to find these coefficients.
- If, moreover, we examine the process of algebraical division as illustrated in ï¿½ 50, we shall find that, just as arithmetical division is really the solution of an equation (ï¿½ 14), and involves the tacit use of a symbol to denote an unknown quantity or number, so algebraical division by a multinomial really implies the use of undetermined coefficients (ï¿½ 42).
- We therefore define algebraical division by means of algebraical multiplication, and say that, if P and M are multinomials, the statement " P/M = Q " means that Q is a multinomial such that MQ (or QM) and P are identical.
- He introduced the terms multinomial, trinomial, quadrinomial, &c., and considerably simplified the notation for decimals.
- Topics will include a review of multiple linear regression and will then focus on logistic regression and multinomial logistic regression.Advertisement
- Now log (1+Ã¯¿½X1 +/22X2+/Ã¯¿½3X3 +Ã¯¿½Ã¯¿½Ã¯¿½) =E log (1+/2aix1+22aix2-1-/23ax3+...) whence, expanding by the exponential and multinomial theorems, a comparison of the coefficients of Ã¯¿½n gives (n) (-)v1+v2+v3+..
- If, moreover, we examine the process of algebraical division as illustrated in Ã¯¿½ 50, we shall find that, just as arithmetical division is really the solution of an equation (Ã¯¿½ 14), and involves the tacit use of a symbol to denote an unknown quantity or number, so algebraical division by a multinomial really implies the use of undetermined coefficients (Ã¯¿½ 42).
- The multi- (or poly-) nomial theorem has for its object the expansion of any power of a multinomial and was discussed in 1697 by Abraham Demoivre (see Combinatorial Analysis).
- The terms trinomial, quadrinomial, multinomial, &c., are applied to expressions composed similarly of three, four or many quantities.