This website uses cookies to ensure you get the best experience. Learn more

magnetic

magnetic

magnetic Sentence Examples

  • Magnetic fields arise from the flow of current.

    340
    165
  • What I have up there is just a power source and magnetic field.

    192
    137
  • At a later date, 1891, Trowbridge discussed another method of effecting communication at a distance, viz., by means of magnetic induction between two separate and completely insulated circuits.

    108
    144
  • At a later date, 1891, Trowbridge discussed another method of effecting communication at a distance, viz., by means of magnetic induction between two separate and completely insulated circuits.

    108
    144
  • For duplex working a " magnetic bridge " is used.

    95
    71
  • in diameter, attached to a stretched fibre and having a M t ru e small magnetic needle fixed to its back, is arranged within a menu.

    57
    43
  • The only other occasions on which he was out of the Netherlands were in 1630, when he made a flying visit to England to observe for himself some alleged magnetic phenomena, and in 16 3 4, when he took an excursion to Denmark.

    36
    33
  • This liability is overcome by making such movable parts as require to be magnetic of soft iron, and magnetizing them by the inducing action of a strong permanent magnet.

    32
    157
  • This liability is overcome by making such movable parts as require to be magnetic of soft iron, and magnetizing them by the inducing action of a strong permanent magnet.

    32
    157
  • If we consider the lines of magnetic force in the neighbourhood of the receiving antenna wire we shall see that they move across it, and thus create in it an electromotive force which acts upon the coherer or other sensitive device associated with it.

    26
    21
  • All of them couple the transmitting antenna directly or inductively to a capacity-inductive circuit serving as a storage of energy, and all of them create thereby electric waves of the same type moving over the earth's surface with the magnetic force of the wave parallel to it.

    26
    21
  • Up to 1895 or 1896 the suggestions for wireless telegraphy which had been publicly announced or tried can thus be classified under three or four divisions, based respectively upon electrical conduction through the soil or sea, magnetic induction through space, combinations of the two foregoing, and lastly, electrostatic induction.

    23
    17
  • In 1902 Marconi invented two forms of magnetic detector, one of which he developed into an electric wave detector of extraordinary delicacy and utility.

    22
    17
  • Fleming, " A Note on a Form of Magnetic Detector for Hertzian Waves adapted for Quantitative Work," Proc. Roy.

    22
    18
  • Across the arc is a transverse or radial magnetic field, and the electrodes are connected by an oscillatory circuit consisting of a condenser and inductance.

    21
    14
  • He carried out a number of magnetic investigations which resulted in the discovery of many interesting phenomena, some of which have been rediscovered by others; they related among other things to the effect of mechanical strain on the magnetic properties of the magnetic metals, to the relation between the chemical composition of compound bodies and their magnetic properties, and to a curious parallelism between the laws of torsion and of magnetism.

    20
    27
  • Rutherford examined it very carefully, and produced a magnetic detector for electric waves depending upon the power of electric oscillations in a coil to demagnetize a saturated bundle of steel wires placed in it.

    19
    25
  • (Id., 27, p. 852.) In addition to the systems of wireless or space telegraphy depending upon conduction through earth or water, and the in ductive system based upon the power of a magnetic Eelson.

    19
    26
  • Willoughby Smith found that it was not necessary even to connect the telephone to a secondary circuit, but that it would be affected and give out sounds merely by being held in the variable magnetic field of a primary circuit.

    16
    22
  • Magnetite, or magnetic iron, the richest of all iron ores, is found in abundance near Wallerawang in New South Wales.

    15
    21
  • The advantage of using the magnetic bridge duplex method is that the maximum current is sent to line or cable, and the receiving system benefits accordingly.

    14
    10
  • The magnetic shunt (which is connected Magnetic across the receiving instrument) consists of a low resist- shunt.

    14
    11
  • The following branches have especially felt his influence: - chemical physics, capillarity and viscosity, theory of gases, flow of liquids, photography, optics, colour vision, wave theory, electric and magnetic problems, electrical measurements, elasticity, sound and hydrodynamics.

    13
    15
  • He remodelled the volumes of observations, put the library on a proper footing, mounted the new (Sheepshanks) equatorial and organized a new magnetic observatory.

    13
    22
  • Poulsen immensely improved this process by placing the arc in an atmosphere of hydrogen, coal-gas or some other nonoxidizing gas, and at the same time arranging it in a strong magnetic field.'

    12
    9
  • He also carried out many experiments in magneto-optics, and succeeded in showing, what Faraday had failed to detect, the rotation under the influence of magnetic force of the plane of polarization in certain gases and vapours.

    12
    14
  • It was also recognized that what is required at the transmitting end is the establishment of powerful electric oscillations in the sending antenna, which create and radiate their energy in the form of electric waves having their magnetic force component parallel to the earth's surface and their electric component perpendicular to it.

    12
    15
  • The result, was in Helmholtz's words, to establish beyond doubt that ordinary light consists of electrical vibrations in an all-pervading ether which possesses the properties of an insulator and of a magnetic medium.

    11
    14
  • At the next instant it is the seat of an electric current and is surrounded by closed lines of magnetic force.

    11
    14
  • In the receiver there is a strong electromagnet, excited by a local current, which has in its circuit two annular air gaps, across which the magnetic field is practically uniform and constant.

    11
    15
  • galvanometer coil so that the influence of the latter causes the mirror (through the action of the magnetic needle) to be turned through a small angle in one direction or the other according to the direction of the current through the coil.

    11
    15
  • This consists of a low resistance coil of copper wire enclosed in a laminated iron circuit similar to the magnetic shunt already de Magnetic scribed.

    11
    15
  • galvanometer coil so that the influence of the latter causes the mirror (through the action of the magnetic needle) to be turned through a small angle in one direction or the other according to the direction of the current through the coil.

    11
    15
  • Owing to hysteresis the part of the band magnetized is not symmetrically placed with regard to the magnetic poles, but advanced in the direction of motion of the band.

    11
    41
  • Owing to hysteresis the part of the band magnetized is not symmetrically placed with regard to the magnetic poles, but advanced in the direction of motion of the band.

    11
    41
  • This creates rapid variations in electric and magnetic force round the antenna and detaches energy from it in the form of an electric wave.

    10
    12
  • Few men have been so courageous, and his influence was magnetic. Even the rough Szeklers, though they did not understand the language of their "little father," regarded him with superstitious reverence.

    10
    18
  • Few men have been so courageous, and his influence was magnetic. Even the rough Szeklers, though they did not understand the language of their "little father," regarded him with superstitious reverence.

    10
    18
  • These coils are drawn down, by the magnetic action of the field on the currents in the coils, into the annular spaces, against the pull of the springs, more or less strongly, according to the strengths of the two line currents.

    9
    11
  • This great event was preceded by the general Portu- utilization in Europe of the polarity of the magnetic guese ex- needle in the construction of the mariner's compass.

    8
    11
  • This great event was preceded by the general Portu- utilization in Europe of the polarity of the magnetic guese ex- needle in the construction of the mariner's compass.

    8
    11
  • of an Austro-Russian army, led by that strange but magnetic being, Suvarov, decided the campaign in northern Italy.

    8
    13
  • If, then, we would indeed restore mankind by truly Indian, botanic, magnetic, or natural means, let us first be as simple and well as Nature ourselves, dispel the clouds which hang over our own brows, and take up a little life into our pores.

    8
    13
  • The receiving apparatus consisted of a multiplier, in the centre of which were pivoted one or two magnetic needles, which either indicated the message by the movement of an index or by striking two bells of different tone, or recorded it by making ink dots on a ribbon of paper.

    8
    16
  • The receiving apparatus consisted of a multiplier, in the centre of which were pivoted one or two magnetic needles, which either indicated the message by the movement of an index or by striking two bells of different tone, or recorded it by making ink dots on a ribbon of paper.

    8
    16
  • The magnetic and electric forces are directed alternately in one direction and the other, and at distances which are called multiples of a wave length the force is in the same direction at the same time, but in the case of damped waves h.as not quite the same intensity.

    7
    10
  • Hartog has endeavoured to show that it can only he formed by a dual force, analagous to that of magnetism, the spindle-fibi es being comparable to the lines of force in a magnetic field and possibly due to electrical differences in the cell.

    7
    12
  • By heating a mixture of cobalt oxalate and sal-ammoniac in air, it is obtained in the form of minute hard octahedra, which are not magnetic, and are only soluble in concentrated sulphuric acid.

    6
    10
  • This method of communication by magnetic induction through space establishes, therefore, a second method of wireless telegraphy which is quite independent of and different from that due to conduction through earth or water.

    6
    11
  • The action of this bridge resembles the magnetic shunt in its effect on the received signals, as the direction of the winding is the same throughout its length, and thus the full inductive action is produced for curbing purposes.

    6
    17
  • The magnetic observations he made during his travels were utilized by C. F.

    5
    11
  • A new building was completed in 1899, the magnetic pavilion lying some 400 yds.

    5
    15
  • In what is known as the " hybrid " form of recorder the permanent magnets are provided with windings of insulated copper wire; the object of these windings is to provide a means of " refreshing " the magnets by means of a strong current temporarily sent through the coils when required, as it has been found that, owing to magnetic leakage and other causes, the magnets tend to lose their power, especially in hot climates.

    5
    17
  • On the British side the question of constructing an Atlantic cable was engaging the attention of the Magnetic Telegraph Company and its engineer Mr (afterwards Sir) Charles Bright.

    3
    8
  • The next class of wave or oscillation detector is the magnetic detector depending upon the power of electric oscillations to affect the magnetic state of iron.

    3
    11
  • In minerals Manchuria is very rich: coal, gold, iron (as well as magnetic iron ore), and precious stones are found in large quantities.

    1
    0
  • These static and kinetic conditions succeed each other rapidly, and the result is to detach or throw off from the antenna semi-loops of electric force, which move outwards in all directions and are accompanied by expanding circular lines of magnetic force.

    0
    0
  • This loop hung in a very strong magnetic field, and when one junction was heated by radiation and convection from the heating wire the loop was 18 See R.

    0
    0
  • At the receiving station the differences in these systems depend chiefly upon variations in the actual form of the oscillation detector used, whether it be a loose contact or a thermal, electrolytic or magnetic detector.

    0
    0
  • Considerable quantities of the following minerals have been found: barytes (heavy spar), magnetite (magnetic iron ore), and pyrolusite (manganese dioxide) in Humboldt county; roofing slate in Esmeralda county; cinnabar (ore containing quicksilver) in Washoe county; haematite in Elko and Churchill counties; cerussite and galena (lead ores) in Eureka county; and wolframite (a source of tungsten) at Round Mountain, White Pine county.

    0
    0
  • The step to magnetic phenomena was comparatively simple; but it was otherwise as regards electromagnetic phenomena, where current electricity is essentially involved.

    0
    0
  • C. Oersted's discovery that a magnetic needle is acted on by a voltaic current.

    0
    0
  • An interesting deposit of oolitic magnetic ore occurs in the Dogger (Inferior Oolite) of Rosedale Abbey, in Yorkshire; and a somewhat similar pisolitic ore, of Jurassic age, is known on the continent as chamoisite, having been named from Chamoison (or Chamoson) in the Valais, Switzerland.

    0
    0
  • Haematite is sometimes magnetic, and A.

    0
    0
  • In the construction of this soft-iron instrument it is essential that the fragment of iron should be as small and as well annealed as possible and not touched with tools after annealing; also it should be preferably not too elongated in shape so that it may not acquire permanent magnetization but that its magnetic condition may follow the changes of the current in the coil.

    0
    0
  • construction of this instrument is as follows: - Within the instrument is a horseshoe magnet having soft-iron pole pieces so arranged as to produce a uniform magnetic field.

    0
    0
  • In this magnetic field is pivoted a small circular or rectangular coil carried in jewelled bearings, the current being passed into and out of the movable coil by fine flexible conductors.

    0
    0
  • of solid brickwork set in clay a massive stone coffer was found lying due magnetic north and south.

    0
    0
  • The method is based on the supposition that the magnetic rotation measures the strain produced in the molecule by an auxochrome, and he arranges the groups in the following order: O.

    0
    0
  • Delisle in 19 sheets (1739-1745); charts illustrating the variation of the compass and of magnetic " dip " by E.

    0
    0
  • So accurate and convenient is this determination that it is now used conversely as a practical definition of the ampere, which (defined theoretically in terms of magnetic force) is defined practically as the current which in one second deposits i '18 milligramme of silver.

    0
    0
  • Thus in 1857 he went to Peru in order to determine the magnetic equator; in1861-1862and 1864, he studied telluric absorption in the solar spectrum in Italy and Switzerland; in 1867 he carried out optical and magnetic experiments at the Azores; he successfully observed both transits of Venus, that of 1874 in Japan, that of 1882 at Oran in Algeria; and he took part in a long series of solar eclipse-expeditions, e.g.

    0
    0
  • The present article is a digest, mainly from an experimental standpoint, of the leading facts and principles of magnetic science.

    0
    0
  • Magnetic Properties of Alloys and Compounds of Iron.

    0
    0
  • The regions of greatest attraction have received the name of poles, and the line joining them is called the axis of the magnet; the space around a magnet in which magnetic effects are exhibited is called the field of magnetic force, or the magnetic field.

    0
    0
  • Up to the end of the 15th century only two magnetic phenomena of importance, besides that of attraction, had been observed.

    0
    0
  • Until 1820 all the artificial magnets in practical use derived their virtue, directly or indirectly, from the natural magnets found in the earth: it is now recognized that the source of all magnetism, not excepting that of the magnetic ore itself, is electricity, and it is usual to have direct recourse to electricity for producing magnetization, without the intermediary of the magnetic ore.

    0
    0
  • A wire carrying an electric current is surrounded by a magnetic field, and if the wire is bent into the form of an elongated coil or spiral, a field having certain very useful qualities is generated in the interior.

    0
    0
  • The compass needle is a little steel magnet balanced upon a pivot; one end of the needle, which always bears a distinguishing mark, points approximately, but not in general exactly, to the north,' the vertical plane through the direction of the needle being termed the magnetic meridian.

    0
    0
  • The bar-magnet, if suspended horizontally in a paper stirrup by a thread of unspun silk, will also come to rest in the magnetic meridian with its marked end pointing northwards.

    0
    0
  • If one pole of the bar-magnet is brought near the compass, it will attract the opposite pole of the compass-needle; and the magnetic action will not be sensibly affected by the interposition between the bar and the compass of any substance whatever except iron or other magnetizable metal.

    0
    0
  • Similar magnetic poles are not merely indifferent to each other, but exhibit actual repulsion.

    0
    0
  • Denoting the two pairs of magnetic poles by N, S and N', S', there is attraction between N and S', and between S and N'; repulsion between N and N', and between S and S'.

    0
    0
  • Hence it is not very easy to determine experimentally the law of magnetic force between poles.

    0
    0
  • Coulomb, who by using very long and thin magnets, so arranged that the action of their distant poles was negligible, succeeded in establishing the law, which has since been confirmed by more accurate methods, that the force of attraction or repulsion exerted between two magnetic poles varies inversely as the square of the distance between them.

    0
    0
  • If a wire of soft iron is substituted for the suspended magnetic needle, either pole of the bar-magnet will attract either end of the wire indifferently.

    0
    0
  • Magnetic force has not merely the property of acting upon magnetic poles, it has the additional property of producing a phenomenon known as magnetic induction, or magnetic flux, a physical condition which is of the nature of a flow continuously circulating through the magnet and the space outside it.

    0
    0
  • When the magnetic induction flows through a piece of iron or other magnetizable substance placed near the magnet, a south pole is developed where the flux enters and a north pole where it leaves the substance.

    0
    0
  • Outside the magnet the direction of the magnetic induction is generally the same as that of the magnetic force.

    0
    0
  • A line of force may be defined as an imaginary line so drawn that its direction at every point of its course coincides with the direction of the magnetic force at that point.

    0
    0
  • A south pole would be urged oppositely to the conventional " direction " of the line; hence it follows that a very small magnetic needle, if placed in the field, would tend to set itself along or tangentially to the line of force passing through its centre, as may be approximately verified if the compass be placed among the filings on the cardboard.

    0
    0
  • The older operation of magnetizing a steel bar by drawing a magnetic pole along it merely consists in exposing successive portions of the bar to the action of the strong field near the pole.

    0
    0
  • When the compass is far from the magnet, the vibrations will be comparatively slow; when it is near a pole, they will be exceedingly rapid, the frequency of the vibrations varying as the square root of the magnetic force at the spot.

    0
    0
  • In a refined form this method is often employed for measuring the intensity of a magnetic field at a given place, just as the intensity of gravity at different parts of the earth is deduced from observations of the rate at which a pendulum of known length vibrates.

    0
    0
  • If however there is a small variation of the force in the space occupied by the body, it can be shown that the body will be urged, not necessarily towards a magnetic pole, but towards places of stronger magnetic force.

    0
    0
  • It will not in general move along a line of force, as would an isolated pole, but will follow the direction in which the magnetic force increases most rapidly, and in so doing it may cross the lines of force obliquely or even at right angles.

    0
    0
  • For the practical observation of this phenomenon it is usual to employ a needle which can turn freely in the plane of the magnetic meridian upon a horizontal axis passing through the centre of gravity of the needle.

    0
    0
  • The angle which the magnetic axis makes with the plane of the horizon is called the inclination or Along an irregular line encircling the earth in the neighbourhood of the geographical equator the needle takes up a horizontal position, and the dip is zero.

    0
    0
  • At places north of this line, which is called the magnetic equator, the north end of the needle points downwards, the inclination generally becoming greater with increased distance from the equator.

    0
    0
  • South of the magnetic equator the south end of the needle is always inclined downwards, and there is a spot within the Antarctic Circle (148° E.

    0
    0
  • To be consistent with the terminology adopted in Britain, it is necessary to regard the pole which is geographically north as being the south pole of the terrestrial magnet, and that which is geographically south as the north pole; in practice however the names assigned to the terrestrial magnetic poles correspond with their geographical situations.

    0
    0
  • Let a magnetic pole be drawn several times around a uniform steel ring, so that every part of the ring may be successively subjected to the magnetic force.

    0
    0
  • The process of magnetization consists in turning round the molecules by the application of magnetic force, so that their north poles may all point more or less approximately in the direction of the force; thus the body as a whole becomes a magnet which is merely the resultant of an immense number of molecular magnets.

    0
    0
  • In every magnet the strength of the south pole is exactly equal to that of the north pole, the action of the same magnetic force upon the two poles being equal and oppositely directed.

    0
    0
  • A magnet attached to a cork and [[[Terminology And Principles]] floated upon water will set itself with its axis in the magnetic meridian, but it will be drawn neither northward nor southward; the forces acting upon the two poles have therefore no horizontal resultant.

    0
    0
  • Iron and its alloys, including the various kinds of steel, though exhibiting magnetic phenomena in a pre-eminent degree, are not the only substances capable of magnetization.

    0
    0
  • Nickel and cobalt are also strongly magnetic, and in 1903 the interesting discovery was made by F.

    0
    0
  • Heusler that an alloy consisting of copper, aluminium and manganese (Heusler's alloy), possesses magnetic qualities comparable with those of iron.

    0
    0
  • But it was discovered by Faraday in 1845 that all substances, including even gases, are either attracted or repelled by a sufficiently powerful magnetic pole.

    0
    0
  • Those substances which are attracted, or rather which tend, like iron, to move from weaker to stronger parts of the magnetic field, are termed paramagnetic; those which are repelled, or tend to move from stronger to weaker parts of the field, are termed diamagnetic. Between the ferromagnetics and the paramagnetics there is an enormous gap. The maximum magnetic susceptibility of iron is half a million times greater than that of liquid oxygen, one of the strongest paramagnetic substances known.

    0
    0
  • On the other hand, the magnetic properties of a substance are affected by such causes as mechanical stress and changes of temperature.

    0
    0
  • electromagnetic system of units will be generally adopted, and, unless otherwise stated, magnetic substances will be assumed to be isotropic, or to have the same physical properties in all directions.

    0
    0
  • A unit magnetic pole is that which acts on an equal pole at a distance of one centimetre with a force of one dyne.

    0
    0
  • The action between any two magnetic poles is mutual.

    0
    0
  • The poles at the ends of an infinitely thin uniform magnet, or magnetic filament, would act as definite centres of force.

    0
    0
  • An actual magnet may generally be regarded as a bundle of magnetic filaments, and those portions of the surface of the magnet where the filaments terminate, and socalled " free magnetism " appears, may be conveniently called poles or polar regions.

    0
    0
  • Any space at every point of which there is a finite magnetic force is called a field of magnetic force, or a magnetic field.

    0
    0
  • The strength or intensity of a magnetic field at any point is measured by the force in dynes which a unit pole will experience when placed at that point, the direction of the field being the direction in which a positive pole is urged.

    0
    0
  • A line of force is a line drawn through a magnetic field in the direction of the force at each point through which it passes.

    0
    0
  • A uniform magnetic field is one in which H has everywhere the same value and the same direction, the lines of force being, therefore, straight and parallel.

    0
    0
  • A magnetic field is generally due either to a conductor carrying an electric current or to the poles of a magnet.

    0
    0
  • The magnetic field due to a long straight wire in which a current of electricity is flowing is at every point at right angles to the plane passing through it and through the wire; its strength at any point distant r centimetres from the wire is H = 21/r, (2) i being the current in C.G.S.

    0
    0
  • The strongest magnetic fields employed for experimental purposes are obtained by the use of electromagnets.

    0
    0
  • The intensity of magnetization, or, more shortly, the magnetization of a uniformly magnetized body is defined as the magnetic moment per unit of volume, and is denoted by I, I, or „a.

    0
    0
  • The direction of the magnetization is that of the magnetic axis of the element;'in isotropic substances it coincides with the direction of the magnetic force at the point.

    0
    0
  • The magnetic potential at any point in a magnetic field is the work which would be done against the magnetic fdrees in bringing a unit pole to that point from the boundary of the field.

    0
    0
  • The line through the given point along which the potential decreases most rapidly is the direction of the resultant magnetic force, and the rate of decrease of the potential in any direction is equal to the component of the force in that direction.

    0
    0
  • The resultant magnetic force at every point of such a surface is in the direction of the normal (n) to the surface; every line of force therefore cuts the equipotential surfaces at right angles.

    0
    0
  • A magnet may be regarded as consisting of an infinite number of elementary magnets, each having a pair of poles and a definite magnetic moment.

    0
    0
  • Such a filament is called a simple magnetic solenoid, and the product aI is called the strength of the solenoid.

    0
    0
  • A thin sheet of magnetic matter magnetized normally to its surface in such a manner that the magnetization at any place is inversely proportional to the thickness h of the sheet at that place is called a magnetic shell; the constant product hI is the strength of the shell and is generally denoted by 4, or 4.

    0
    0
  • The potential at any point due to a magnetic shell is the product of its strength into the solid angle w subtended by its edge at the given point, or V = Fu.

    0
    0
  • A magnet which can be divided into simple magnetic shells, either closed or having their edges on the surface of the magnet, is called a lamellar magnet, and the magnetism is said to be distributed lamellarly.

    0
    0
  • The potential due to a uniformly magnetized sphere of radius a for an external point at a distance r from the centre is V =:I ra 3 I cos 0/r 22, (23) 0 being the inclination of r to the magnetic axis.

    0
    0
  • For most practical purpose a knowledge of the exact position of the poles is of no importance; the magnetic moment, and therefore the mean magnetization, can always be determined with accuracy.

    0
    0
  • Magnetic Induction or Magnetic Flux.

    0
    0
  • - When magnetic force acts on any medium, whether magnetic, diamagnetic or neutral, it produces within it a phenomenon of the nature of a flux or flow called magnetic induction (Maxwell, loc. cit., § 428).

    0
    0
  • Magnetic induction, like other fluxes such as electrical, thermal or fluid currents, is defined with reference to an area; it satisfies the same conditions of continuity as the electric current does, and in isotropic media it depends on the magnetic force just as the electric current depends on the electromotive force.

    0
    0
  • In a uniform magnetic field of unit intensity formed in empty space the induction or magnetic flux across an area of I square centimetre normal to the direction of the field is arbitrarily taken as the unit of induction.

    0
    0
  • In the case of a straight uniformly magnetized bar the direction of the magnetic force due to the poles of the magnet is from the north to the south pole outside the magnet, and from the south to the north inside.

    0
    0
  • The magnetic flux per square centimetre at any point (B, B, or 0) is briefly called the induction, or, especially by electrical engineers, the flux-density.

    0
    0
  • The direction of magnetic induction may be indicated by lines of induction; a line of induction is always a closed curve, though it may possibly extend to and return from infinity.

    0
    0
  • When induction or magnetic flux takes place in a ferromagnetic metal, the metal becomes magnetized, but the magnetization at any point is proportional not to B, but to B - H.

    0
    0
  • (25) Unless the path of the induction is entirely inside the metal, free magnetic poles are developed at those parts of the metal where induction enters and leaves, the polarity being south at the entry and north at the exit of the flux.

    0
    0
  • These free poles produce a magnetic field which is superposed upon that arising from other sources.

    0
    0
  • The resultant magnetic field, therefore, is compounded of two fields, the one being due to the poles, and the other to the external causes which would be operative in the absence of the magnetized metal.

    0
    0
  • Magnetization is usually regarded as the direct effect of the resultant magnetic force, which is therefore often termed the magnetizing force.

    0
    0
  • The magnetic susceptibility expresses the numerical relation of the magnetization to the magnetizing force.

    0
    0
  • From the equation K=(µ - I)/47r, it follows that the magnetic susceptibility of a vacuum (where µ = I) is o, that of a diamagnetic substance (where, u I) is positive.

    0
    0
  • The circulation of magnetic induction or flux through magnetic and non-magnetic substances, such as iron and air, is in many respects analogous to that of an electric current through good and bad conductors.

    0
    0
  • The total magnetic induction or flux corresponds to the current of electricity (practically measured in amperes); the induction or flux density B to the density of the current (number of amperes to the square centimetre of section); the magnetic permeability to the specific electric conductivity; and the line integral of the magnetic force, sometimes called the magnetomotive force, to the electro-motive force in the circuit.

    0
    0
  • The principal points of difference are that (I) the magnetic permeability, unlike the electric conductivity, which is independent of the strength of the current, is not in general constant; (2) there is no perfect insulator for magnetic induction, which will pass more or less freely through all known substances.

    0
    0
  • Nevertheless, many important problems relating to the distribution of magnetic induction may be solved by methods similar to those employed for the solution of analogous problems in electricity.

    0
    0
  • For the elementary theory of the magnetic circuit see ELECTxoMAGNETISM.

    0
    0
  • It is found that when a piece of ferromagnetic metal, such as, iron, is subjected to a magnetic field of changing intensity, the changes which take place in the induced magnetization of the iron exhibit a tendency to lag behind those which occur in the intensity of the field - a phenomenon to which J.

    0
    0
  • Much depends upon its antecedent magnetic condition, and indeed upon its whole magnetic history.

    0
    0
  • If a bar of hard steel is placed in a strong magnetic field, a certain intensity of magnetization is induced in the bar; but when the strength of the field is afterwards reduced to zero, the magnetization does not entirely disappear.

    0
    0
  • The coercive force, or coercivity, of a material is that reversed magnetic force which, while it is acting, just suffices to reduce the residual induction to nothing after the material has been temporarily submitted to any great magnetizing force.

    0
    0
  • Demagnetizing Force.-It has already been mentioned that when a ferromagnetic body is placed in a magnetic field, the resultant magnetic force H, at a point within the body, is compounded of the force H o, due to the external field, and of another force, Hi, arising from the induced magnetization of the body.

    0
    0
  • Except in the few special cases when a uniform external field produces uniform magnetization, the value of the demagnetizing force cannot be calculated, and an exact determination of the actual magnetic force within the body is therefore impossible.

    0
    0
  • du Bois (Magnetic Circuit, p. 33), the demagnetizing factor, and the ratio of the length of the ellipsoid 2c to its equatorial diameter 2a (=c/a), the dimensional ratio, denoted by the symbol nt.

    0
    0
  • Equations (33) and (34) show that when, as is generally the case with ferromagnetic substances, the value of is considerable, the resultant magnetic force is only a small fraction of the external force, while the numerical value of the induction is approximately three times that of the external force, and nearly independent of the permeability.

    0
    0
  • In the middle part of a rod which has a length of 400 or 500 diameters the effect of the ends is insensible; but for many experiments the condition of endlessness may be best secured by giving the metal the shape of a ring of uniform section, the magnetic field being produced by an electric current through a coil of wire evenly wound round the ring.

    0
    0
  • Demagnetization by Reversals.-In the course of an experiment it is often desired to eliminate the effects of previous magnetization, and, as far as possible, wipe out the magnetic history of a specimen.

    0
    0
  • In order to attain this result it was formerly the practice to raise the metal to a bright red heat, and allow it to cool while carefully guarded from magnetic influence.

    0
    0
  • 539) of demagnetizing a specimen by subjecting it to a succession of magnetic forces which alternated in direction and gradually diminished in strength from a high value to zero.

    0
    0
  • Forces acting on a Small Body in the Magnetic Field.-If a small magnet of length ds and pole-strength m is brought into a magnetic field such that the values of the magnetic potential at the negative and positive poles respectively are V 1 and the work done upon the magnet, and therefore its potential energy, will be W =m(V2-Vi) =mdV, which may be written W =m d s- = M d v= - MHo = - vIHo, ds ds where M is the moment of the magnet, v the volume, I the magnetization, and Ho the magnetic force along ds.

    0
    0
  • dW F - d -v 1+ a 7rK dx dH (38) (34) [[[Magnetic Measurements]] If Ho is constant, the force will be zero; if Ho is variable, the sphere will tend to move in the direction in which Ho varies most rapidly.

    0
    0
  • For this reason a thin bar suspended at its centre of gravity between a pair of magnetic poles will, if paramagnetic, set itself along the line joining the poles, where the field is strongest, and if diamagnetic, transversely to the line.

    0
    0
  • - An electric current i flowing uniformly through a cylindrical wire whose radius is a produces inside the wire a magnetic field of which the lines of force are concentric circles around the axis of the wire.

    0
    0
  • At a point whose distance from the axis of the wire is r the tangential magnetic force is H = 21r /a 2 (39) it therefore varies directly as the distance from the axis, where it is zero.'

    0
    0
  • Hence any apparatus, such as a galvanometer, may be partially shielded from extraneous magnetic action by enclosing it in an iron case.

    0
    0
  • In anisotropic bodies, such as crystals, the direction of the magnetization does not in general coincide with that of the magnetic force.

    0
    0
  • Magnetic Measurements Magnetic Moment.

    0
    0
  • M/H = (d 2 -1 2) tan 0/2d, where 1 is half the length of the magnet, which is placed in the " broadside-on " position as regards a small suspended magnetic needle, d the distance between the centre of the magnet and the needle, and 0 the angle through which the needle is deflected by the magnet.

    0
    0
  • Thus if the magnet is suspended horizontally by a fine wire, which, when the magnetic axis points north and south, is free from torsion, and if 0 is the angle through which the upper end of the wire must be twisted to make the magnet point east and west, then MH = CB, or M = C6/H, where C is the torsional couple for r 0.

    0
    0
  • If two magnets having moments M, M' are arranged at right angles to each other upon a horizontal support which is free to rotate, their resultant R will set itself in the magnetic meridian.

    0
    0
  • A convenient and rapid method of estimating a magnetic moment has been devised by H.

    0
    0
  • The magnetic condition assumed by a piece of ferromagnetic metal in different circumstances is determinable by various modes of experiment which may be classed as magnetometric, ballistic, and traction methods.

    0
    0
  • - Intensity of magnetization is most directly measured by observing the action which a magnetized body, generally a long straight rod, exerts upon a small magnetic needle placed near it.

    0
    0
  • The magnetic needle may be cemented horizontally across the back of a little plane or concave mirror, about or $ in.

    0
    0
  • The suspended needle is, in the absence of disturbing causes, directed solely by the horizontal component of the earth's field of magnetic force H E, and therefore sets itself approximately north and south.

    0
    0
  • (I) The rod is set in a horizontal position level with the suspended needle, its axis being in a line which is perpendicular to the magnetic meridian, and which passes through the centre of suspension of the needle.

    0
    0
  • This last method of arrangement is called by Ewing the " one-pole method, because the magnetometer deflection is mainly caused by the upper pole of the rod (Magnetic Induction, p. 40).

    0
    0
  • On the other hand, a vertically placed rod is subject to the inconvenience that it is influenced by the earth's magnetic field, which is not the case when the rod is horizontal and at right angles to the magnetic meridian.

    0
    0
  • This extraneous influence may, however, be eliminated by surrounding the rod with a coil of wire carrying a current such as will produce in the interior a magnetic field equal and opposite to the vertical component of the earth's field.

    0
    0
  • Of the three methods which have been described, the first two are generally the most suitable for determining the moment or the magnetization of a permanent magnet, and the last for studying the changes which occur in the magnetization of a long rod or wire wl?E:n subjected to various external magnetic forces, or, in other words, for determining the relation of I to H.

    0
    0
  • The inner coil is supplied, through the intervening apparatus, with current from the battery of secondary cells B,; this produces the desired magnetic field inside the tube.

    0
    0
  • Therefore and m = v I - 'm of d22 (47) constant cell B21 its object is to produce inside the tube a magnetic field equal and opposite to that due to the earth's magnetism.

    0
    0
  • The magnetometric method, except when employed in connexion with ellipsoids, for which the demagnetizing factors are [[[Magnetic Measurements]] accurately known, is generally less satisfactory for the exact determination of induction or magnetization than the ballistic method.

    0
    0
  • Rowland and others have used an earth coil for calibrating the galvanometer, a known change of induction through the coil being produced by turning it over in the earth's magnetic field, but for several reasons it is preferable to employ an electric current as the source of a known induction.

    0
    0
  • The closed figure a c d e a is variously called a hysteresis curve or diagram or loop. The area f HdB enclosed by it represents the work done in carrying a cubic centimetre of the iron through the corresponding magnetic cycle; expressed in ergs this work is I HdB.

    0
    0
  • For a simple proof, see Ewing, Magnetic Induction (1900), p. 99.

    0
    0
  • The distinguishing feature of the first is the steepness of its outlines; this indicates that the induction increases rapidly in relation to the magnetic force, and hence the metal is well suited for the construction of dynamo magnets.

    0
    0
  • Bedford 3 have Magnetic Induction, 1900, 378.

    0
    0
  • [[[Magnetic Measurements]] introduced the method of measuring hysteresis by means of an electro-dynamometer used ballistically.

    0
    0
  • After pointing out that, since the magnetization of the metal is the quantity really concerned, W is more appropriately expressed in terms of I, the magnetic moment per unit of volume, than of B, he suggests an experiment to determine whether the mechanical work required to effect the complete magnetic reversal i Phil.

    0
    0
  • of a crowd of small compass needles (representative of magnetic molecules) is proportional to the 1.6th power of the aggregate maximum magnetic moment before or after completion of the cycle.

    0
    0
  • These are to be regarded merely as typical specimens, for the details of a curve depend largely upon the physical condition and purity of the material; but they show at a glance how far the several metals differ from and resemble one another as regards their magnetic properties.

    0
    0
  • The magnetic quality of a sample of iron depends very largely upon the purity and physical condition of the metal.

    0
    0
  • The permeability of a soft iron wire, which was tapped while subjected to a very small magnetizing force, rose to the enormous value of about 80,000 (Magnetic Induction, § 85).

    0
    0
  • It follows that in testing iron for magnetic quality the greatest care must be exercised to guard the specimen against any accidental vibration.

    0
    0
  • In a valuable collection of magnetic data (Proc. Inst.

    0
    0
  • [[[Magnetic Measurements]] that could be produced by any magnetizing force, however great.

    0
    0
  • 19 shows the apparatus by which the ends of the bar are prevented from exerting any material demagnetizing force, while the permeance of the magnetic circuit is at the same time increased.

    0
    0
  • With such an arrangement it is possible to submit the sample to any series of magnetic forces, and to measure its magnetic state at the end.

    0
    0
  • He applied his method with good effect, however, in testing a large number of commercial specimens of iron and steel, the magnetic constants of which are given in a table accompanying his paper.

    0
    0
  • Ewing (Magnetic Induction, § 194) has devised an arrangement in which two similar test bars are placed side by side; each bar is surrounded by a magnetizing coil, the two coils being connected to give opposite directions of magnetization, and each pair of ends is connected by a short massive block of soft iron having holes bored through it to fit the bars, which are clamped in position by set-screws.

    0
    0
  • The method, though tedious in operation, is very accurate, and is largely employed for determining the magnetic quality of bars intended to serve .as standards.

    0
    0
  • The equation F = B 2 /87r is often said to express " Maxwell's law of magnetic traction " (Maxwell, Electricity and Magnetism,, §§ 642-646).

    0
    0
  • Mag., 1886, 22, 535) experimented on the relation of tractive force to magnetic induction.

    0
    0
  • In the magnetic balance of du Bois (Magnetic Circuit, p. 346) the uncertainty arising from the presence of a joint is avoided, the force measured being that exerted between two pieces of iron separated from each other by a narrow air-gap of known width.

    0
    0
  • In Ewing's magnetic balance (Journ.

    0
    0
  • 1898, 27, 526), the value of the magnetic induction corresponding to a single stated magnetizing force is directly read off on a divided scale.

    0
    0
  • Several pieces of apparatus have been invented for comparing the magnetic quality of a sample with that of a standard iron rod by a zero method, such as is employed in the comparison of electrical resistances by the Wheatstone bridge.

    0
    0
  • Suppose the switches to be adjusted so that the effective number of turns in the variable coil is loo; the magnetizing forces in the two coils will then be equal, and if the test rod is of the same quality as the standard, the flow of induction will be confined entirely to the iron circuit, the two yokes will be at the same magnetic potential, and the compass needle will not be affected.

    0
    0
  • - Since in air B = H, the ballistic method of measuring induction described above is also available for determining the strength of a magnetic field, and is more often employed than any other.

    0
    0
  • The fact, which will be referred to later, that the electrical resistance of bismuth is very greatly affected by a magnetic field has been applied in the construction of apparatus for measuring field intensity.

    0
    0
  • Unfortunately the effects of magnetization upon the specific resistance of bismuth vary enormously with changes of temperature; it is therefore necessary to take two readings of the resistance, one when the spiral is in the magnetic field, the other when it is outside.

    0
    0
  • If a coil of insulated wire is suspended so that it is in stable equilibrium when its plane is parallel to the direction of a magnetic field, the transmission of a known electric current through the coil will cause it to be deflected through an angle which is a function of the field intensity.

    0
    0
  • The intensity of a field may be measured by the rotation of the plane of polarization of light passing in the direction of the magnetic force through a transparent substance.

    0
    0
  • - The most generally convenient arrangement for producing such magnetic fields as are required for experimental purposes is undoubtedly a coil of wire through which an electric current can be caused to flow.

    0
    0
  • But when exceptionally strong fields are desired, the use of a coil is limited by the heating effect of the magnetizing current, the quantity of heat generated per unit of time in a coil of given dimensions increasing as the square of the magnetic field produced in its interior.

    0
    0
  • In experiments on magnetic strains carried out by H.

    0
    0
  • Du Bois's results, which, as given in his papers, show the relation of H to the magnetic moment per unit of mass, have been reduced by Ewing to the usual form, and are indicated in fig.

    0
    0
  • 23 should have a common vertex in the middle of the neck with a semi-vertical angle of 54° 44', while the condition for a uniform field is satisfied when the cones have a semivertical angle of 39° 14'; in the latter case the magnetic force in the air just outside is sensibly equal to that within the neck.

    0
    0
  • The corresponding intensity of the outside field was 24,500, but, owing to the wide angle of the cones used (about X63°), this was probably greater than the value of the magnetic force within the metal.

    0
    0
  • When the saturation value of I has been reached, the relation of magnetic induction to magnetic force may be expressed by B = H +constant.

    0
    0
  • Magnetization In Very Weak Fields Some interesting, observations have been made of the effects produced by very small magnetic forces.

    0
    0
  • Mag., 1887, 23, 225) approached very much more nearly than Baur to the zero of magnetic force.

    0
    0
  • Experiments with annealed iron gave less satisfactory results, on account of the slowness with which the metal settled down into a new magnetic state, thus causing a " drift " of the magnetometer needle, which sometimes persisted for several seconds.

    0
    0
  • While therefore the initial susceptibility of nickel is less than that of iron and steel, the range of magnetic force within which it is approximately constant is about one hundred times greater.

    0
    0
  • Soc., 1889, 46, 269) of " magnetic viscosity " under small forces-the cause of the magnetometer " drift " referred to by Rayleigh.

    0
    0
  • It is remarkable that the phenomena of magnetic viscosity are much more evident in a thick rod than in a thin wire, or even in a large bundle of thin wires.

    0
    0
  • In hardened iron and steel the effect can scarcely be detected, and in weak fields these metals exhibit no magnetic hysteresis of any kind.

    0
    0
  • In weak fields the magnetic contraction is always diminished by pulling stress; in strong fields the contraction increases under a small load and diminishes under a heavy one.

    0
    0
  • Knott on magnetic twist, which will be referred to later, led him to form the conclusion that in an iron wire carrying an electric current the magnetic elongation would be increased.

    0
    0
  • Some experiments were next undertaken with the view of ascertaining how far magnetic changes of length in iron were dependent upon the hardness of the metal, and the unexpected result was arrived at that softening produces the same effect as tensile stress; it depresses the elongation curve, diminishing the maximum extension, and reducing the " critical value " of the magnetizing force.

    0
    0
  • In the case of the ring in question, the circumferential changes were in weak fields less than twice as great as the transverse ones, while in strong fields they were more than twice as great; under increasing magnetic force therefore the volume of the ring was first diminished, then it regained its original value (for H=go), and ultimately increased.

    0
    0
  • The complicated hysteresis effects which attend magnetic elongation and retraction have been studied by H.

    0
    0
  • For soft iron, tungsten-steel and nickel little difference appeared to result from lowering the temperature down to - 186° C. (the temperature of liquid air); at sufficiently high temperatures, 600 to 1000° or more, it was remarked that the changes of length in iron, steel and cobalt tended in every case to become proportional to the magnetic force, the curves being nearly straight lines entirely above the axis.

    0
    0
  • The same physicists have made some additional experiments upon the effect of tension on magnetic change of length.

    0
    0
  • Attempts have been made to explain magnetic deformation by various theories of magnetic stress,' notably that elaborated by G.

    0
    0
  • If a long magnetized rod is divided transversely and the cut ends placed nearly in contact, the magnetic force inside the narrow air gap will be B = H +47rI.

    0
    0
  • regarded as a " correction " to be applied to the results of experiments on magnetic change of length, the magnetic stress being no less an extraneous effect than a stress applied mechanically.

    0
    0
  • The point at issue has an important bearing upon the possible correlation of magnetic phenomena, but, though it has given rise to much discussion, no accepted conclusion has yet been reached.'

    0
    0
  • Villari in 1868 that the magnetic susceptibility of an iron wire was increased by stretching when the magnetization was below a certain value, but diminished when that value was exceeded; this phenomenon has been termed by Lord Kelvin, who discovered it independently, the " Villari reversal," the value of the magnetization for which stretching by a given load produces no effect being known as the " Villari critical point " for that load.

    0
    0
  • Trans., 1885, 176, 580; 1888, 1 79, 333; Magnetic Induction, 1900, ch.

    0
    0
  • The effects of longitudinal pressure are opposite to those of traction; when the cyclic condition has been reached, pressure reduces the magnetization of iron in weak fields and increases it in strong fields (Ewing, Magnetic Induction, 1900, 223).

    0
    0
  • Thomson, who, from the results of Bidwell's observations on the magnetic deformation of cobalt, was led to expect that that metal would exhibit a reversal opposite in character to the effect observed in iron.

    0
    0
  • They also investigated the ' magnetic behaviour of various nickelsteels under tension, and found that there was always increase of magnetization.

    0
    0
  • 4 Magnetic Induction, 1900, 222.

    0
    0
  • Mag., 1898, 46, 261) have investigated the effects of hydrostatic pressure upon magnetization, using the same pieces of iron and nickel as were employed in their experiments upon magnetic change of volume.

    0
    0
  • To this mechanical phenomenon there is a magnetic reciprocal.

    0
    0
  • The wire is subject to two superposed magnetizations, the one longitudinal, the other circular, due to the current traversing the wire; the resultant magnetization is consequently in the direction of a screw or spiral round the wire, which will be right-handed or left-handed according as the relation between the two magnetizations is right-handed or left-handed; the magnetic expansion or contraction of the metal along the spiral lines of magnetization produces the Wiedemann twist.

    0
    0
  • 4 Nagaoka' has described the remarkable influence of combined torsion and 'tension upon the magnetic susceptibility of nickel, and has made the extraordinary observation that, under certain conditions of stress, the magnetization of a nickel wire may have a direction opposite to that of the magnetizing force.

    0
    0
  • An exhaustive research into the effects of heating on the magnetic properties of iron has been carried out by D.

    0
    0
  • Specimens of curves showing the relation of induction to magnetic field at various temperatures, and of permeability to temperature with fields of different intensities, are given in figs.

    0
    0
  • Experiments were made at several constant temperatures with varying magnetic fields, and also at constant fields with rising and falling temperatures.

    0
    0
  • The paper contains tables and curves showing details of the magnetic changes, sometimes very complex, at different temperatures and with different fields.

    0
    0
  • Experiments with the sample of unannealed iron failed to give satisfactory results, owing to the fact that no constant magnetic condition could be obtained.

    0
    0
  • The first immersion into liquid air generally produced a permanent decrease of magnetic moment, and there was sometimes a further decrease when the metal was warmed up again; but after a few alternations of temperature the changes of moment.

    0
    0
  • became definite and cyclic. When the permanent magnetic condition had been thus established, it was found that in the case of all the metals, except the two alloys containing large percentages of nickel, the magnetic moment was temporarily increased by cooling to - 186°.

    0
    0
  • An alloy containing about 3 parts of iron and I of nickel - both strongly magnetic metals - is under ordinary conditions practically non-magnetizable (1 1=1'4 for any value of H).

    0
    0
  • If, however, this non-magnetic substance is cooled to a temperature a few degrees below freezing-point, it becomes as strongly magnetic as average cast-iron (µ = 62 for H = 40), and retains its magnetic properties indefinitely at ordinary temperatures.

    0
    0
  • ] Honda and Shimizu (loc. cit.) have determined the two critical temperatures for eleven nickel-steel ovoids, containing from 24.04 to 70.32% of nickel, under a magnetizing force of 400, and illustrated by an interesting series of curves, the gradual transformation of the magnetic properties as the percentage of nickel was decreased.

    0
    0
  • Guillaume' the temperature at which the magnetic susceptibility of nickel-steel is recovered is lowered by the presence of chromium; a certain alloy containing chromium was not rendered magnetic even by immersion in liquid air.

    0
    0
  • Trans., 1885, 176, 455) employed his yoke method to test the magnetic properties of thirty-five samples of iron and steel, among which were steels containing substantial proportions of manganese, silicon, chromium and tungsten.

    0
    0
  • The most striking phenomenon which they bring into prominence is the effect of any considerable quantity of manganese in annihilating the magnetic property of iron.

    0
    0
  • According to Hopkinson's calculation, this sample behaved as if 91% of the iron contained in it had completely lost its magnetic property.'

    0
    0
  • Another point to which attention is directed is the exceptionally great effect which hardening has upon the magnetic properties of chrome steel; one specimen had a coercive force of 9 when annealed, and of no less than 38 when oilhardened.

    0
    0
  • Soc., 1890, 48, 1) also noticed some peculiarities of an unexpected nature in the magnetic properties of the nickel-steel alloys already referred to.

    0
    0
  • The magnetic qualities of various alloys of iron have been submitted to a very complete examination by W.

    0
    0
  • A very small difference in the constitution often produces a remarkable effect upon the magnetic quality, and it unfortunately happens that those alloys which are hardest magnetically are generally also hardest mechanically and extremely difficult to work; they might however be used rolled or as castings.

    0
    0
  • in thickness, which occurred on the outside of the specimen, and the exceptional magnetic quality which has been claimed for aluminium-iron cannot yet be regarded as established.

    0
    0
  • Magnetic Alloys of Non-Magnetic Metals.-The interesting discovery was made by F.

    0
    0
  • In all such magnetizable alloys the presence of manganese appears to be essential, and there can be little doubt that the magnetic quality of the mixtures is derived solely from this component.

    0
    0
  • Now iron, nickel and cobalt all lose their magnetic quality when heated above certain critical temperatures which vary greatly for the three metals, and it was suspected by Faraday 3 as early as 1845 that manganese might really be a ferromagnetic metal having a critical temperature much below the ordinary temperature of the air.

    0
    0
  • He therefore cooled a piece of the metal to-105° C., the lowest temperature then attainable, but failed to produce any change in its magnetic quality.

    0
    0
  • If this view is correct, it may also be possible to prepare magnetic alloys of chromium, the only other paramagnetic metals of the iron group.

    0
    0
  • The magnetization curve was found to be of the same general form as that of a paramagnetic metal, and gave indications that with a sufficient force magnetic saturation would probably be attained.

    0
    0
  • Trans., 1883, Part I., 153) discovered in 1881 that the resistance of a bismuth rod was slightly increased when the rod was subjected to longitudinal magnetic force, and a year or two later A.

    0
    0
  • Among the most important experiments on the influence of magnetic force at different temperatures are those of J.

    0
    0
  • But the application of a magnetic field at right angles to the plane of the metal causes the equipotential lines to rotate through a small angle, and the points at] which the galvanometer is connected being no longer at the same potential, a current is indicated by the galvanometer.'

    0
    0
  • Electro-Thermal Relations.-The Hall electromotive force is only one of several so-called " galvano-magnetic effects " which are observed when a magnetic field acts normally upon a thin plate of metal traversed by an electric current.

    0
    0
  • The curves given by Houllevigue for the relation of thermo-electric force to magnetic field are of the same general form as those showing the relation of change of length to field.

    0
    0
  • Rhoads obtained a cyclic curve for iron which indicated thermo-electric hysteresis of the kind exhibited by Nagaoka's curves for magnetic strain.

    0
    0
  • Bidwell," who, adopting special precautions against sources of error by which former work was probably affected, measured the changes of thermo-electric force for iron, steel, nickel and cobalt produced by magnetic fields up to I Soo units.

    0
    0
  • In the case of iron and nickel it was found that, when correction was made for mechanical stress due to magnetization, magnetic change of thermo-electric force was, within the limits of experimental error, proportional to magnetic change of length.

    0
    0
  • to the magnetized cobalt was proportional to the square of the magnetic induction or of the magnetization.

    0
    0
  • As to what effect, if any, is produced upon the thermo-electric quality of bismuth by a magnetic field there is still some doubt.

    0
    0
  • de Phys., Paris, 1900, p. 561) that the true effect of magnetization is liable to be disguised by secondary or parasitic phenomena, arising chiefly from polarization of the electrodes and from local variations in the concentration and magnetic condition of the electrolyte; these may be avoided by working with weak solutions, exposing only a small surface in a non-polar region of the metal, and substituting a capillary electrometer for the galvanometer generally used.

    0
    0
  • - The following are recent determinations of the magnetic susceptibility of water: Observer.

    0
    0
  • It is pointed out that this formula may be used as a temperature correction in magnetic determinations carried out in air.

    0
    0
  • The magnetic properties of the metal at different temperatures and in fields up to 1350 units have been studied by P. Curie (loc. cit.), who found that its " specific susceptibility " (K) was independent of the strength of the field, but decreased with rise of temperature up to the melting-point, 273° C. His results appear to show the relation - K X10 6 = I'381 - O'o0155t°.

    0
    0
  • Many of their compounds are very strongly magnetic, erbium, for example, in Er203 being four times as strong as iron in the familiar magnetite or lodestone, Fe203.

    0
    0
  • An excellent summary regarding the magnetic properties of matter, with many tables and references, has been compiled by du Bois (Report to the Congres Int.

    0
    0
  • Weber's theory, the molecules of a ferromagnetic metal are small permanent magnets, the axes of which under ordinary conditions are turned indifferently in every direction, so that no magnetic polarity is exhibited by the metal as a whole; a magnetic force acting upon the metal tends to turn the axes of the little magnets in one direction, and thus the entire piece acquires the properties of a magnet.

    0
    0
  • When no current is passing through the coil and the magnetic field is of zero strength, the needles arrange themselves in positions of stable equilibrium under their mutual forces, pointing in.

    0
    0
  • many different directions, so that there is no resultant magnetic moment.

    0
    0
  • This corresponds to the second stage of magnetization, in which the susceptibility is large and permanent magnetization is set up. A still stronger magnetizing force has little effect except in causing the direction of the needles to approach still more nearly to that of the field; if the force were infinite, every member of the group ‘ would have exactly the same direction and the greatest possible resultant moment would be reached; this illustrates " magnetic saturation " - the condition approached in the third stage of magnetization.

    0
    0
  • The fact being established that magnetism is essentially a molecular phenomenon, the next step is to inquire what is the constitution of a magnetic molecule, and why it is that some molecules are ferromagnetic, others paramagnetic, and others again diamagnetic. The best known of the explanations that have been proposed depend upon the magnetic action of an electric current.

    0
    0
  • It can be shown that if a current i circulates in a small plane circuit of area S, the magnetic action of the circuit for distant points is equivalent to that of a short magnet whose axis is perpendicular to the plane of the circuit and whose moment is iS, the direction of the magnetization being related to that of the circulating current as the thrust of a right-handed screw to its rotation.

    0
    0
  • The creation of an external magnetic field H will, in accordance with Lenz's law, induce in the molecule an electric current so directed that the magnetization of the equivalent magnet is opposed to the direction of the field.

    0
    0
  • The strength of the induced current is - HScosO/L, where 0 is the inclination of the axis of the circuit to the direction of the field, and L the coefficient of self-induction; the resolved part of the magnetic moment in the direction of the field is equal to - HS 2 cos 2 6/L, and if there are n molecules in a unit of volume, their axes being distributed indifferently in all directions, the magnetization of the substance will be-3nHS 2 /L, and its susceptibility - 3S 2 /L (Maxwell, Electricity and Magnetism, § 838).

    0
    0
  • There are strong reasons for believing that magnetism is a phenomenon involving rotation, and as early as 1876 Rowland, carrying out an experiment which had been proposed by Maxwell, showed that a revolving electric charge produced the same magnetic effects as a current.

    0
    0
  • As a consequence of the structure of the molecule, which is an aggregation of atoms, the planes of the orbits around the latter may be oriented in various positions, and the direction of revolution may be right-handed or left-handed with respect to the direction of any applied magnetic field.

    0
    0
  • For those orbits whose projection upon a plane perpendicular to the field is righthanded, the period of revolution will be accelerated by the field (since the electron current is negative), and the magnetic moment consequently increased; for those which are left-handed, the period will be retarded and the moment diminished.

    0
    0
  • According to the best determinations the value of elm does not exceed 1.8X Io', and T is of the order of Io 15 second, the period of luminous vibrations; hence OM/M must always be less than 109 H, and therefore the strongest fields yet reached experimentally, which fall considerably short of Io %, could not change the magnetic moment M by as much as a ten-thousandth part.

    0
    0
  • If the structure of the molecule is so perfectly symmetrical that, in the absence of any external field, the resultant magnetic moment of the circulating electrons is zero, then the application of a field, by accelerating the right-handed (negative) revolutions, and retarding those which are left-handed, will induce in the substance a resultant magnetization opposite in direction to the field itself; a body composed of such symmetrical molecules is therefore diamagnetic. If however the structure of the molecule is such that the electrons revolving around its atoms do not exactly cancel one another's effects, the molecule constitutes a little magnet, which under the influence of an external field will tend to set itself with its axis parallel to the field.

    0
    0
  • His title to be honoured as the " Father of Magnetic Philosophy " is based even more largely upon the scientific method which he was the first to inculcate and practise than upon the importance of his actual discoveries.

    0
    0
  • The greatest of Gilbert's discoveries was that the globe of the earth was magnetic and a magnet; the evidence by which he supported this view was derived chiefly from ingenious experiments made with a spherical lodestone or lerrella, as he termed it, and from his original observation that an iron bar could be magnetized by the earth's force.

    0
    0
  • He also carried out some new experiments on the effects of heat, and of screening by magnetic substances, and investigated the influence of shape upon the magnetization of iron.

    0
    0
  • No material advance upon the knowledge recorded in Gilbert's book was made until the establishment by Coulomb in 1785 of the law of magnetic action.

    0
    0
  • The difficulties attending the experimental investigation of the forces acting between magnetic poles have already been referred to, and indeed a rigorously exact determination of the mutual action could only be made under conditions which are in practice unattainable.

    0
    0
  • by all observers in magnetic observatories, who are every day making measurements of magnetic quantities, and who obtain results which would be inconsistent with each other if the law of force had been erroneously assumed.

    0
    0
  • When the fluids inside a particle were mixed together, the particle was neutral; when they were more or less completely separated, the particle became magnetized to an intensity depending upon the magnetic force applied; the whole body therefore consisted of a number of little spheres having north and south poles, each of which exerted an elementary action at a distance.

    0
    0
  • C. Oersted 6 that a magnet placed near a wire carrying an electric current tended to set itself at right angles to the wire, a phenomenon which indicated that the current was surrounded by a magnetic field.

    0
    0
  • du Bois, Magnetic Circuit, chs.

    0
    0
  • Another was the magnetic rotation of the plane of polarization of light, which was effected in 1845, and for the first time established a relation between light and magnetism.

    0
    0
  • This was followed at the close of the same year by the discovery of the magnetic condition of all matter, a discovery which initiated a prolonged and fruitful study of paramagnetic and diamagnetic phenomena, including magnecrystallic action and " magnetic conducting power," now known as permeability.

    0
    0
  • Throughout his researches Faraday paid special regard to the medium as the true seat of magnetic action, being to a large extent guided by his pregnant conception of " lines of force," or of induction, which he considered to be " closed curves passing in one part of the course through, the magnet to which they belong, and in the other part through space," always tending to shorten themselves, and repelling one another when they were side by side (Exp. Res.

    0
    0
  • Maxwell explained electric and magnetic forces, not by the action at a distance assumed by the earlier mathematicians, but by stresses in a medium filling all space, and possessing qualities like those attributed to the old luminiferous ether.

    0
    0
  • The practice of measuring magnetic induction and permeability with scientific accuracy was introduced in 1873 by H.

    0
    0
  • Rowland,' whose careful experiments led to general recognition of the fact previously ignored by nearly all investigators, that magnetic susceptibility and permeability are by no means constants (at least in the case of the ferromagnetic metals) but functions of the magnetizing force.

    0
    0
  • New light was thrown upon many important details of magnetic science by A.

    0
    0
  • 2 His well-known modification 3 of Weber's molecular theory, published in 1890, presented for the first time a simple and sufficient explanation of hysteresis and many other complexities of magnetic quality.

    0
    0
  • Thomson (Lord Kelvin), Reprint of Papers on Electrostatics and Magnetism (London, 1884, containing papers on magnetic theory originally published between 1844 and 1855, with additions); J.

    0
    0
  • Ewing, Magnetic 1 Phil.

    0
    0
  • Trans., 1885, 176, 523; Magnetic Induction, 1900.

    0
    0
  • du Bois, The Magnetic Circuit (trans.

    0
    0
  • (2nd ed., Leipzig, 1905; the most exhaustive compendium of magnetic science yet published, containing references to all important works and papers on every branch of the subject).

    0
    0
  • They relate almost entirely to electrical phenomena, such as the magnetic rotation of light, the action of gas batteries, the effects of torsion on magnetism, the polarization of electrodes, &c., sufficiently complete accounts of which are given in Wiedemann's Galvanismus.

    0
    0
  • C. Oersted (1777-1851) had shown that a magnetic needle is deflected by an electric current, he attempted, in the laboratory of the Royal Institution in the presence of Humphry Davy, to convert that deflection into a continuous rotation, and also to obtain the reciprocal effect of a current rotating round a magnet.

    0
    0
  • Gauss in particular employed it in the calculation of the magnetic potential of the earth, and it received new light from Clerk Maxwell's interpretation of harmonics with reference to poles on the sphere.

    0
    0
  • On the one hand he worked out the general theory of the magnetic circuit in the dynamo (in conjunction with his brother Edward), and the theory of alternating currents, and conducted a long series of observations on the phenomena attending magnetization in iron, nickel and the curious alloys of the two which can exist both in a magnetic and non-magnetic state at the same temperature.

    0
    0
  • The material has been considered by some to be magnetic iron ore and by others oxide of manganese.

    0
    0
  • 428 Magnetic Properties.

    0
    0
  • Barlow's principal works are - Elementary Investigation of the Theory of Numbers 0810; New Mathematical and Philosophical Dictionary (1814); Essay on Magnetic Attractions (1820).

    0
    0
  • A single vortex will remain at rest, and cause a velocity at any point inversely as the distance from the axis and perpendicular to its direction; analogous to the magnetic field of a straight electric current.

    0
    0
  • In 1785 appeared his Recherches theoriques et experimentales sur la force de torsion et sur l'elasticite des fils de metal, &c. This memoir contained a description of different forms of his torsion balance, an instrument used by him with great success for the experimental investigation of the distribution of electricity on surfaces and of the laws of electrical and magnetic action, of the mathematical theory of which he may also be regarded as the founder.

    0
    0
  • Schmiedel suggests, in the allegorical style of Philo, and he was evidently a man of unusual magnetic force.

    0
    0
  • The Wetherill system of magnetic concentration has been remarkably successful in separating the minerals contained in the well-known deposit in Sussex (disambiguation)|Sussex county, N.J.

    0
    0
  • The magnetic concentrates contain enough zinc to be well adapted to the manufacture of zinc oxide.

    0
    0
  • Magnetic concentration is also applied in the removal of an excess of iron from partially roasted blende.

    0
    0
  • Neither mechanical nor magnetic concentration can effect much in the way of separation when, as in many complex ores, carbonates of iron, calcium and magnesium replace the isomorphous zinc carbonate, when some iron sulphide containing less sulphur than pyrites replaces zinc sulphide, and when gold and silver are contained in the zinc ore itself.

    0
    0
  • His talent for electrical engineering was soon shown, and his progress was rapid; so that in 1852 he was appointed engineer to the Magnetic Telegraph Company, and in that capacity superintended the laying of lines in various parts of the British Isles, including in 1853 the first cable between Great Britain and Ireland, from Portpatrick to Donaghadee.

    0
    0
  • Titan-eisen) is FeT103, perofskite (Ca,Fe)TiO 3, and the metal occurs in most magnetic iron ores.

    0
    0
  • a-, privative, and ywvia, an angle), the term given to the imaginary lines on the earth's surface connecting points at which the magnetic needle points to the geographical north and south.

    0
    0
  • Still more wonderful was Savonarola's influence over children, and their response to his appeals is a proof of the magnetic power of his goodness and purity.

    0
    0
  • Old schists, free from fossils and rich in quartz, overlie it in parallel chains through the whole length of the peninsula, especially in the central and highest ridges, and bear the ores of Chu-goku (the central provinces), principally copper pyrites and magnetic pyrites.

    0
    0
  • He wrote a lucid account of the phenomena of phosphorescence, and adduced a molecular magnetic theory which anticipated some of the chief features of the hypothesis of to-day.

    0
    0
  • Magnetic in personality, incisive and powerful in manner of expression, he was in his prime one of the most eloquent of American pulpit orators.

    0
    0
  • One of the most interesting amongst recent alloys is Conrad Heusler's alloy of copper, aluminium and manganese, which possesses magnetic properties far in excess of those of the constituent metals.

    0
    0
  • Magnetic pyrites, copper pyrites, zinc blende and arsenical pyrites are other and less important examples, the last constituting the gold ore formerly worked in Silesia.

    0
    0
  • In the alluvial deposits the associated minerals are chiefly those of great density and hardness, such as platinum, osmiridium and other metals of the platinum group, tinstone, chromic, magnetic and brown iron ores, diamond, ruby and sapphire, zircon, topaz, garnet, &c. which represent the more durable original constituents of the rocks whose distintegration has furnished the detritus.

    0
    0
  • Black magnetic iron sand covers the shore in Milne Bay.

    0
    0
  • Porous carbon blocks, made by strongly heating a mixture of powdered charcoal with oil, resin, &c., were introduced about a generation later, and subsequently various preparations of iron (spongy iron, magnetic oxide) found favour.

    0
    0
  • The establishment of a system of magnetic observatories in various parts of British territory all over the globe was accomplished mainly on his representations; and a great part of his life was devoted to their direction, and to the reduction and discussion of the observations.

    0
    0
  • The German South Polar expedition in 1901-1902 established a meteorological and magnetic station at Royal Sound, under Dr Enzensperger, who died there.

    0
    0
  • The two coils, the shunt and the series coil, then produce two magnetic fields, with their lines of force at right angles to one another.

    0
    0
  • When the armature is rotated, these two coils endeavour to place themselves in certain directions in the field so as to be perforated by the greatest magnetic flux.

    0
    0
  • The brakes are magnetic, with auxiliary handbrakes.

    0
    0
  • Important magnetic observations were begun at Makerstoun in 1841, and the results gained him in 1848 the Keith prize of the Royal Society of Edinburgh, in whose Transactions they were published.

    0
    0
  • The thin disk of mercury is therefore traversed perpendicularly by lines of magnetic force when the magnet is excited.

    0
    0
  • The mass of mercury is thus set in motion owing to the tendency of a conductor conveying an electric current to move transversely across lines of magnetic force; it becomes in fact the armature of a simple form of dynamo, and rotates with a speed which increases with the strength of the current.

    0
    0
  • The latter is slit radially, and the magnetic field is so arranged that it perforates each half of the disk in opposite directions.

    0
    0
  • The current to be measured passes transversely across the disk and causes it to revolve in the magnetic field; at the same time the copper brake, geared on the same shaft, revolves in the field and has local or eddy currents produced in it which retard its action.

    0
    0
  • Induced or eddy currents are thus created in the copper disk, and the reaction of these against the magnetic field offers a resistance to the rotation of the disk.

    0
    0
  • Since the eddy currents induced in the disk are 90 degrees in phase behind the inducing field, the eddy currents produced by the main coil are in step with the magnetic field due to the shunt coil, and hence the disk is driven round by the revolution due to the action of the shunt coil upon the induced currents in the disk.

    0
    0
  • Aethers were invented for the planets to swim in, to constitute electric atmospheres and magnetic effluvia, to convey sensations from one part of our bodies to another, and so on, till all space had been filled three or four times over with aethers.

    0
    0
  • A train of ideas which strongly impressed itself on Clerk Maxwell's mind, in the early stages of his theoretical views, was put forward by Lord Kelvin in 1858; he showed that the special characteristics of the rotation of the plane of polarization, discovered by Faraday in light propagated along a magnetic field, viz.

    0
    0
  • that it is doubled instead of being undone when the light retraces its path, requires the operation of some directed agency of a rotational kind, which must be related to the magnetic field.

    0
    0
  • Lord Kelvin was thereby induced to identify magnetic force with rotation, involving, therefore, angular momentum in the aether.

    0
    0
  • When Clerk Maxwell pointed out the way to the common origin of optical and electrical phenomena, these equations naturally came to repose on an electric basis, the connexion having been first definitely exhibited by FitzGerald in 1878; and according as the independent variable was one or other of the vectors which represent electric force, magnetic force or electric polarity, they took the form appropriate to one or other of the elastic theories above mentioned.

    0
    0
  • When the atoms are in motion these strain-forms produce straining and unstraining in the aether as they pass across it, which in its motional or kinetic aspect constitutes the resulting magnetic field; as the strains are slight the coefficient of ultimate inertia here involved must be great.

    0
    0
  • Now the electric force (P,Q,R) is the force acting on the electrons of the medium moving with velocity v; consequently by Faraday's electrodynamic law (P,Q,R) = (P',Q' - vc, R'+vb) where (P',Q',R') is the force that would act on electrons at rest, and (a,b,c) is the magnetic induction.

    0
    0
  • where (u,v,w) = and where, when magnetic quality is inoperative, the magnetic induction (a,b,c) is identical with the magnetic force (a,0,y).

    0
    0
  • For the simplest case of polarized waves travelling parallel to the axis of x, with the magnetic oscillation y along z and the electric oscillation Q along y, all the quantities are functions of x and t alone; the total current is along y and given with respect to our moving axes by __ (d_ d Q+vy d K-1 Q, dt dx) 47rc 2 + dt (4?rc 2) ' also the circuital relations here reduce to _ dydQ _dy _ dx 47rv ' _ dt ' d 2 Q dv dx 2 -417t giving, on substitution for v, d 2 Q d 2 Q d2Q (c2-v2)(7372 = K dt 2 2u dxdt ' For a simple wave-train, Q varies as sin m(x-Vt), leading on substitution to the velocity of propagation V relative to the moving material, by means of the equation KV 2 + 2 uV = c 2 v2; this gives, to the first order of v/c, V = c/K i - v/K, which is in accordance with Fresnel's law.

    0
    0
  • The modification of the spectrum of a radiating gas by a magnetic field, such as would result from the hypothesis that the radiators are the system of revolving or oscillating electrons in the molecule, was detected by P. Zeeman in 1896, and worked up, in conjunction with H.

    0
    0
  • Later still he engaged in the study of the relations between chemical constitution and rotation of the plane of polarization in a magnetic field, and enunciated a law expressing the variation of such rotation in bodies belonging to homologous series.

    0
    0
  • Becoming interested in terrestrial magnetism he made many observations of magnetic intensity and declination in various parts of Sweden, and was charged by the Stockholm Academy of Sciences with the task, not completed till shortly before his death, of working out the magnetic data obtained by the Swedish frigate "Eugenie" on her voyage round the world in 1851-1853.

    0
    0
  • But the fundamental ideas of Gnosticism and of early Christianity had a kind of magnetic attraction for each other.

    0
    0
  • The magnetic observatory of Dublin was erected in the years 1837-1838 in the gardens attached to Trinity College, at the expense of the university.

    0
    0
  • Electromagnetic voltmeters consist of a coil of fine wire connected to the terminals of the instrument, and the current produced in that wire by a difference of potential between the terminals creates a magnetic field proportional at any point to the strength of the current.

    0
    0
  • This magnetic field may be made to cause a displacement 0 FIG.

    0
    0
  • constant magnetic field, and in the interspace between the poles is fixed a delicately pivoted coil of wire carried in jewelled bearings.

    0
    0
  • (vi.) It should not be disturbed easily by external electric or magnetic fields.

    0
    0
  • This last point is important in connexion with voltmeters used on the switchboards of electric generating stations, where relatively strong electric or magnetic fields may be present, due to strong currents passing through conductors near or on the board.

    0
    0
  • Perhaps we may illustrate his position by saying that the elements undergo a change analogous to what takes place in iron, when by being brought into an electric field it becomes magnetic. The substance of the elements remain as well as their accidents, but like baptismal water they gain by consecration a hidden virtue benefiting soul and body.

    0
    0
  • The "magnetic equator" is an imaginary line encircling the earth, along which the vertical component of the earth's magnetic force is zero; it nearly coincides with the terrestrial equator.

    0
    0
  • A red-haired Jew, he possessed a magnetic and artistic temperament, and had various special methods of arousing and restraining the revolutionary masses, including orchestral and vocal concerts of high excellence in the formerly royal theatres and the opera house of Munich.

    0
    0
  • Verneuil succeeded in imparting a sapphire-blue colour to artificial alumina by addition of i 5% of magnetic oxide of iron and o.

    0
    0
  • In these last Mayer sought to explain the magnetic action of the earth by a modification of Euler's hypothesis, and made the first really definite attempt to establish a mathematical theory of magnetic action (C. Hansteen, Magnetismus der Erde, i.

    0
    0
  • Although he had previously published meritorious researches on piezoelectricity, the magnetic properties of bodies at different temperatures, and other topics, he was chiefly known for his work on radium carried out jointly with his wife, Marie Sklodowska, who was born at Warsaw on the 7th of November 1867.

    0
    0
  • The study of these vortices has led to the discovery of a magnetic field in sun-spots, apparently caused by electric convection in the vortices.

    0
    0
  • The rapid variation in the intensity of the magnetic field causes a brilliant electrodeless discharge which is seen in the form of a ring passing near the inner walls of the bulb when the pressure is properly adjusted.

    0
    0
  • The change of frequency of oscillation of radiating molecules placed in a magnetic field, which was discovered by P. Zeeman, and the observed polarization of the components, are all beautifully explained by the theory of H.

    0
    0
  • On the other hand, most of the lines show a more complicated structure in the magnetic field, suggesting a system of electrons rather than a single free corpuscle.

    0
    0
  • The component lines of a band spectrum do not as a rule give the Zeeman effect, and this seems to be connected with their freedom from pressure shifts, for when Dufour had shown that the bands of the fluoride of calcium were sensitive to the magnetic field, R.

    0
    0
  • MAGNETOMETER, a name, in its most general sense, for any instrument used to measure the strength of any magnetic field; it is, however, often used in the restricted sense of an instrument for measuring a particular magnetic field, namely, that due to the earth's magnetism, and in this article the instruments used for measuring the value of the earth's magnetic field will alone be considered.

    0
    0
  • The measurement of the declination involves two separate observations, namely, the determination of (a) the magnetic meridian and (b) the geographical meridian, the angle between the two being the declination.

    0
    0
  • In order to determine the magnetic meridian the orientation of the magnetic FIG.

    0
    0
  • The geometrical axis of the magnet is sometimes defined by means of a mirror rigidly attached to the magnet and having the normal to the mirror as nearly as may be parallel to the magnetic axis.

    0
    0
  • This arrangement is not very convenient, as it is difficult to protect the mirror from accidental displacement, so that the angle between the geometrical and magnetic axes may vary.

    0
    0
  • The telescope B serves to observe the scale attached to the magnet when determining the magnetic meridian, and to observe the sun or star when determining the geographical meridian.

    0
    0
  • The mean of all the readings of the verniers gives the reading on the azimuth circle corresponding to the magnetic meridian.

    0
    0
  • By the vibration experiment we obtain the value of the product of the magnetic moment (M) of the magnet into the horizontal component (H), while by the deflexion experiment we can deduce the value of the ratio of M to H, and hence the two combined give both M and H.

    0
    0
  • In the case of the Kew pattern unifilar the same magnet that is used for the declination is usually employed for determining H, and for the purposes of the vibration experiment it is mounted as for the observation of the magnetic meridian.

    0
    0
  • What is known as the method of sines is used, for since the axes of the two magnets are always at right angles when the mirror magnet is in its zero position, the ratio M/H is proportional to the sine of the angle between the magnetic axis of the mirror magnet and the magnetic - = meridian.

    0
    0
  • The difference between the two sets of readings gives twice the angle which the magnetic axis of the mirror magnet makes with the magnetic meridian.

    0
    0
  • Omitting correction terms depending on the temperature and on the inductive effect of the earth's magnetism on the moment of the deflecting magnet, if 0 is the angle which the axis of the deflected magnet makes with the meridian when the centre of the deflecting magnet is at a distance r, then zM sin B=I+P+y2 &c., in which P and Q are constants depending on the dimensions and magnetic states of the two magnets.

    0
    0
  • Mag., 1904 [6], 7, p. 113.) In the case of the vibration experiment correction terms have to be introduced to allow for the temperature of the magnet, for the inductive effect of the earth's field, which slightly increases the magnetic moment of the magnet, and for the torsion of the suspension fibre, as well as the rate of the chronometer.

    0
    0
  • deflexion experiment, then no correction on account of the effect of temperature in the magnetic moment would be necessary in either experiment.

    0
    0
  • In the deflexion experiment, in addition to the induction correction, and that for the effect of temperature on the magnetic moment, a correction has to be applied for the effect of temperature on the length of the bar which supports the deflexion magnet.

    0
    0
  • Mascart, Traite de magnetisme terrestre, containing a description of the instruments used in the French magnetic survey, which are interesting on account of their small size and consequent easy portability; H.

    0
    0
  • Measurements of the Magnetic Elements at Sea.

    0
    0
  • - Owing to the fact that the proportion of the earth's surface covered by sea is so much greater than the dry land, the determinaton of the magnetic elements on board ship is a matter of very considerable importance.

    0
    0
  • In order to obtain the declination a pivoted magnet is used to obtain the magnetic meridian, the geographical meridian being obtained by observations on the sun or stars.

    0
    0
  • A carefully made ship's compass is usually employed, though in some cases the compass card, with its attached magnets, is made reversible, so that the inclination to the zero of the card of the magnetic axis of the system of magnets attached to the card can be eliminated by reversal.

    0
    0
  • The magnetism of these two needles is never reversed, and they are as much as possible protected from shock and from approach to other magnets, so that their magnetic state may remain as constant as possible.

    0
    0
  • This angle depends on the ratio of the magnetic moment of the needle b to the total force of the earth's field.

    0
    0
  • Hence the above observation gives us a means of obtaining the ratio of the magnetic moment of the needle' b to the value of the earth's total force.

    0
    0
  • The method is not strictly an absolute one, since it presupposes a knowledge of the magnetic moment of the deflecting magnet.

    0
    0
  • In practice it is found that a magnet can be prepared which, when suitably protected from shock, &c., retains its magnetic moment sufficiently constant to enable observations of H to be made comparable in accuracy with that of the other elements obtained by the instruments ordinarily employed at sea.

    0
    0
  • A magnetic observatory was equipped at Bogen Atlas range the food of this bird is said to consist chiefly of the Testudo mauritanica, which "it carries to some height in the air, and lets fall on a stone to break the shell" (Ibis, 18 59, p. 1 77).

    0
    0
  • hausen in 1840 through his initiative; he executed comprehensive magnetic surveys 1849-1858; announced the magnetic decennial period irk 1850, and his discovery of earth-currents in 1862.

    0
    0
  • meridian, called the magnetic variation or declination; amongst mariners this angle is known as the variation of the compass.

    0
    0
  • In the usual navigable waters of the world the variation alters from 30° to the east to 45° to the west of the geographical meridian, being westerly in the Atlantic and Indian oceans, easterly in the Pacific. The vertical plane passing through the longitudinal axis of such a needle is known as the magnetic meridian.

    0
    0
  • Following the first chart of lines of equal variation compiled by Edmund Halley in 1700, charts of similar type have been published from time to time embodying recent observations and corrected for the secular change, thus providing seamen with values of the variation accurate to about 30' of arc. Possessing these data, it is easy to ascertain by observation the effects of the iron in a ship in disturbing the compass, and it will be found for the most part in every vessel that the needle is deflected from the magnetic meridian by a horizontal angle called the deviation of the compass; in some directions of the ship's head adding to the known variation of the place, in other directions subtracting from it.

    0
    0
  • Local magnetic disturbance of the needle due to magnetic rocks is observed on land in all parts of the world, and in certain places extends to the land under the sea, affecting the compasses on board the ships passing over it.

    0
    0
  • The magnetic axis of any system of needles must exactly coincide with the axis passing through the north and south points of the card.

    0
    0
  • 0, 0, Magnetic needles.

    0
    0
  • in which the ship is steering and the north point of the compass or course is at once seen; and if the magnetic variation and the disturbing effects of the ship's iron are known, the desired angle between the ships's course and the geographical meridian can be computed.

    0
    0
  • "Investigator" in 1800-1803, and in 1810 led that officer to introduce the practice of placing the ship's head on each point of the compass, and noting the amount of deviation whether to the east or west of the magnetic north, a process which is in full exercise at the present day, and is called "swinging ship."

    0
    0
  • When speaking of the magnetic properties of iron it is usual to adopt the terms "soft" and "hard."

    0
    0
  • Soft iron is iron which becomes instantly magnetized by induction when exposed to any magnetic force, but has no power of retaining its magnetism.

    0
    0
  • If an iron ship be swung when upright for deviation, and the mean horizontal and vertical magnetic forces at the compass positions be also observed in different parts of the world, mathematical analysis shows that the deviations are caused partly by the permanent magnetism of hard iron, partly by the transient induced magnetism of soft iron both horizontal and vertical, and in a lesser degree by iron which is neither magnetically hard nor soft, but which becomes magnetized in the same manner as hard iron, though it gradually loses its magnetism on change of conditions, as, for example, in the case of a ship, repaired and hammered in dock, steaming in an opposite direction at sea.

    0
    0
  • Each ship has its own magnetic character, but there are certain conditions which are common to vessels of the same type.

    0
    0
  • Although a compass may thus be made practically correct for a given time and place, the magnetism of the ship is liable to changes on changing her geographical position, and especially so when steaming at right angles or nearly so to the magnetic meridian, for then sub-permanent magnetism is developed in the hull.

    0
    0
  • The superintendent, who is a naval officer, has to investigate the magnetic character of the ships, to point out the most suitable positions for the compasses when a ship is designed, and subsequently to keep himself informed of their behaviour from the tin g e of the ship's first trial.

    0
    0
  • 28-30) mentions the pointing of the magnetic needle toward the pole star.

    0
    0
  • The first part of the epistle deals generally with magnetic attractions and repulsions, with the polarity of the stone, and with the supposed influence of the poles of the heavens upon the poles of the stone.

    0
    0
  • A specimen of one of these heavy glasses afterwards became historically important as the substance in which Faraday detected the rotation of the plane of polarization of light when the glass was placed in the magnetic field, and also as the substance which was first repelled by the poles of the magnet.

    0
    0
  • We may remark, however, that although the fact of the tangential force between an electric current and a magnetic pole was clearly stated by Oersted, and clearly apprehended by A.

    0
    0
  • Faraday had for a long time kept in view the possibility of using a ray of polarized light as a means of investigating the condition of transparent bodies when acted on by electric and magnetic forces.

    0
    0
  • On the 13th of September he worked with lines of magnetic force.

    0
    0
  • It gave no effects when the same magnetic poles or the contrary poles were on opposite sides (as respects the course of the polarized ray), nor when the same poles were on the same side either with the constant or intermitting current.

    0
    0
  • But when contrary magnetic poles were on the same side there was an effect produced on the polarized ray, and thus magnetic force and light were proved to have relations to each other.

    0
    0
  • "When it was arranged, and had come to rest, I found I could affect it by the magnetic forces and give it position."

    0
    0
  • The discovery of the magnetic rotation of the plane of polarized light, though it did not lead to such important practical applications as some of Faraday's earlier discoveries, has been of the highest value to science, as furnishing complete dynamical evidence that wherever magnetic force exists there is matter, small portions of which are rotating about axes parallel to the direction of that force.

    0
    0
  • While he was still lecturing on natural philosophy at Queenwood College, his magnetic investigations made him known in the higher circles of the scientific world, and through the initiative of Sir E.

    0
    0
  • It was observed by the animal magnetists at the beginning of the 19th century in France and Germany, that certain of their subjects, when in the "magnetic" trance, could foretell accurately the course of their diseases, the date of the occurrence of a crisis and the length of time needed to effect a cure.

    0
    0
  • Owing to proximity to the magnetic compass the whole of the tube must be non-magnetic. High-strength bronze was used in the earlier practice in the British navy.

    0
    0
  • In this charge he remained for 35 years, exercising from his pulpit a truly magnetic influence, not so discernible in his published sermons.

    0
    0
  • It is not magnetic. It stands near the positive end of the list of elements arranged in electromotive series, being exceeded only by the alkalis and metals of the alkaline earths; it therefore combines eagerly, under suitable conditions, with oxygen and chlorine.

    0
    0
  • Magnetic pyrites of commercial importance occurs also in Virginia and Tennessee.

    0
    0
  • Iron, the most abundant and the cheapest of the heavy metals, the strongest and most magnetic of known substances, is perhaps also the most indispensable of all save the air we breathe and the water we drink.

    0
    0
  • It is extremely magnetic and almost non-magnetic; as brittle as glass and almost as pliable and ductile as copper; extremely springy, and springless and dead; wonderfully strong, and 1 The word " iron " was in 0.

    0
    0
  • eutectic,a earIitei-Cementit .(/a primarg, Oxide, Cementite(t 400 300 20 even if rich in austenite, is strongly magnetic because of the very magnetic a-iron which inevitably forms even in the most rapid cooling from region 4.

    0
    0
  • It is the common, very magnetic form of iron, in itself ductile but relatively soft and weak, as we know it in wrought iron and mild or low-carbon steel.

    0
    0
  • At the second retardation, K" (Ar2, about 770°) this ferrite changes to the normal magnetic a-ferrite, so that the mass as a whole becomes magnetic. Moreover, the envelopes of ferrite which began forming at Ar 3 continue to broaden by the accession of more and more ferrite born from the austenite progressively as the temperature sinks, till, by the time when Ar t (about 690°) is reached, so much free ferrite has been formed that the remaining mother-metal has been enriched to the composition of hardenite, i.e.

    0
    0
  • They are non-magnetic or very feebly magnetic. But the critical points of such nickel steel though thus depressed, are not destroyed; and if it is cooled in liquid air below its Ar, it passes to the a state and becomes magnetic.

    0
    0
  • It is very magnetic, and sometimes polar.

    0
    0
  • This seems to be the case with molten sulphur, which, when heated, becomes dark-coloured and plastic; and also in the case of metals, which obtain or lose magnetic properties without loss of continuous structure.

    0
    0
  • The connexion between aurora and earth magnetic disturbances renders it practically certain that if a 26-day or similar period exists in the one phenomenon it exists also in the other, and of the two terrestrial magnetism is probably the element least affected by external complications, such as the action of moonlight.

    0
    0
  • Auroral Meridian.-It is a common belief that the summit of an auroral arc is to be looked for in the observer's magnetic meridian.

    0
    0
  • In high latitudes the average height is probably less, but the direction in which the magnetic needle TABLE V.

    0
    0
  • Thus there must in general be a difference between the observer's magnetic meridian - answering to the mean position of the magnetic needle at his station - and the direction the needle would have at a given hour, if undisturbed by the aurora, at any spot where the phenomena which the observer sees as aurora exist.

    0
    0
  • of the magnetic meridian.

    0
    0
  • of N., thus approaching much more closely to the magnetic meridian 29.9° W.

    0
    0
  • Azimuths were also measured at Jan Mayen for 338 auroral bands, the mean being 22.0° W., or 7.9° to the east of the magnetic meridian.

    0
    0
  • At Godthaab in 1882-1883 the auroral anomaly was, according to Paulsen, 15.5° E., the magnetic meridian lying 57.6° W.

    0
    0
  • Thus at Cape Thorsden (7) in 1882-1883 the mean of a considerable number of observations made the angle between the two directions only 1° 7', the magnetic inclination being 80° 35', whilst the coronal centre had an altitude of 79° 55' and lay somewhat to the west of the magnetic meridian.

    0
    0
  • Even smaller mean values have been found for the angle between the auroral and magnetic " zeniths " - as the two directions have been called - e.g.

    0
    0
  • Relations to Magnetic Storms. - That there is an intimate connexion between aurora when visible in temperate latitudes and terrestrial magnetism is hardly open to doubt.

    0
    0
  • A bright aurora visible over a large part of Europe seems always accompanied by a magnetic storm and earth currents, and the largest magnetic storms and the most conspicuous auroral displays have occurred simultaneously.

    0
    0
  • Noteworthy examples are afforded by the auroras and magnetic storms of August 28-29 and September 1-2, 1859; February 4, 1872; February 13-14 and August 12, 1892; September 9, 1898; and October 31, 1903.

    0
    0
  • On some of these occasions aurora was brilliant in both the northern and southern hemispheres, whilst magnetic disturbances were experienced the whole world over.

    0
    0
  • In high latitudes, however, where both auroras and magnetic storms are most numerous, the connexion between them is much less uniform.

    0
    0
  • Arctic observers, both Danish and British, have repeatedly reported displays of aurora unaccompanied by any special magnetic disturbance.

    0
    0
  • When there has been much apparent movement, and brilliant changes of colour in the aurora, magnetic disturbance has nearly always accompanied it.

    0
    0
  • Birkeland (19), who has made a special study of magnetic disturbances in the Arctic, proceeding on the hypothesis that they arise from electric currents in the atmosphere, and who has thence attempted to deduce the position and intensity of these currents, asserts that whilst in the case of many storms the data were insufficient, when it was possible to fix the position of the mean line of flow of the hypothetical current relatively to an auroral arc, he invariably found the directions coincident or nearly so.

    0
    0
  • In the northern hemisphere to the south of the zone of greatest frequency, the part of the sky in which aurora most generally appears is the magnetic north.

    0
    0
  • At Tasiusak (10) in 1898-1899 the magnetic directions of the principal types were noted separately.

    0
    0
  • But clearly, whilst the arcs and bands, and to a lesser extent the patches, showed a marked preference for the magnetic meridian, the rays showed no such preference.

    0
    0
  • (about 32 miles) long, the ends being in the same magnetic meridian, on opposite sides of a fiord, and observations were confined to this meridian, strict simultaneity being secured by signals.

    0
    0
  • His apparatus consists of a vacuum vessel containing a magnetic sphere-intended to represent the earth-and the phenomena are produced by sending electric discharges through the vessel.

    0
    0
  • To avoid the possi bility of displacements clue to magnetic influences, the needle may be replaced by a brass or glass rod.

    0
    0
  • This was burnt mouth-down in the oven., and the ashes on the ground reduced the red haematite to black magnetic oxide of iron; some traces of carbonyl in the ash helped to rearrange the magnetite as a brilliant mirror-like surface of intense black.

    0
    0
  • Its dioxide (pyrolusite) has been known from very early times, and was at first mistaken for a magnetic oxide of iron.

    0
    0
  • By a skilful division of labour, and by the erection of numerous observing stations, the mapping out of the whole coast proceeded simultaneously under the eye of the general director, and in addition a vast mass of magnetic and meteorological observations was collected.

    0
    0
  • A small amount of work is treated by the Bower-Barff and allied processes, by which a coating of magnetic oxide is left on the metal.

    0
    0
  • Lower Palaeozoic strata lap up on to the crystalline rocks on all sides of the mountain group. The region is rich in magnetic iron ores, which though mined for many years are not yet fully developed.

    0
    0
  • Halley's most notable scientific achievements were - his detection of the "long inequality" of Jupiter and Saturn, and of the acceleration of the moon's mean motion (1693), his discovery of the proper motions of the fixed stars (1718), his theory of variation (1683), including the hypothesis of four magnetic poles, revived by C. Hansteen in 1819, and his suggestion of the magnetic origin of the aurora borealis; his calculation of the orbit of the 1682 comet (the first ever attempted), coupled with a prediction of its return, strikingly verified in 1759; and his indication (first in 1679, and again in 1716, Phil.

    0
    0
  • The magnetic pole party from the main base, under Lt.

    0
    0
  • The magnetic observations, though imperfect, led him to the conclusion that the magnetic effect at all attainable elevations above the earth's surface remains constant; and on analysing the samples of air he could find no difference of composition at different heights.

    0
    0
  • In 1807 an account of the magnetic observations made during the tour with Humboldt was published in the first volume of the Memoires d'Arcueil, and the second volume, published in 1809, contained the important memoir on gaseous combination (read to the Societe Philomathique on the last day of 1808), in which he pointed out that gases combining with each other in volume do so in the simplest proportions-1 to 1, 1 to 2, 1 to 3 - and that the volume of the compound formed bears a simple ratio to that of the constituents.

    0
    0
  • It is magnetic, but loses its magnetism when heated, the loss being complete at about 34 0 -35 0 ° C. On the physical constants see H.

    0
    0
  • It thus resembles magnetite in external characters, but is readily distinguished from this by the fact that it is only slightly magnetic. It is found in considerable amount, associated with zinc minerals (zincite and willemite) in crystalline limestone, at Franklin Furnace, New Jersey, where it is mined as an ore of zinc (containing 5 to 20% of the metal); after the extraction of the zinc, the residue is used in the manufacture of spiegeleisen (the mineral containing 15 to 20% of manganese oxides).

    0
    0
Browse other sentences examples →