This website uses cookies to ensure you get the best experience. Learn more

Under the general heading "Analysis" occur the subheadings "Foundations of Analysis," with the topics theory of functions of real variables, series and other infinite processes, principles and elements of the differential and of the integral calculus, definite integrals, and calculus of variations; "Theory of Functions of Complex Variables," with the topics functions of one variable and of several variables; "Algebraic Functions and their Integrals," with the topics algebraic functions of one and of several variables, elliptic functions and single theta functions, Abelian integrals; "Other Special Functions," with the topics Euler's, Legendre's, Bessel's and automorphic functions; "Differential Equations," with the topics existence theorems, methods of solution, general theory; "Differential Forms and Differential Invariants," with the topics differential forms, including Pfaffians, transformation of differential forms, including tangential (or contact) transformations, differential invariants; "Analytical Methods connected with Physical Subjects," with the topics harmonic analysis, Fourier's series, the differential equations of applied mathematics, Dirichlet's problem; "Difference Equations and Functional Equations," with the topics recurring series, solution of equations of finite differences and functional equations.

00He attended lectures on the numerical solution of equations and on definite integrals by M.

00He appears to have attended Dirichlet's lectures on theory of numbers, theory of definite integrals, and partial differential equations, and Jacobi's on analytical mechanics and higher algebra.

00He also showed that every equation of an even degree must have at least one real quadratic factor, reduced the solution of linear differential equations to definite integrals, and furnished an elegant method by which the linear partial differential equation of the second order might be solved.

00The integrals are then properly functions of the direction in which the light is to be estimated.

00If when the aperture is given, the wave-length (proportional to k1) varies, the composition of the integrals is unaltered, provided E and n are taken universely proportional to X.

00We will now apply the integrals (2) to the case of a rectangular aperture of width a parallel to x and of width b parallel to y.

00If the grating be composed of alternate transparent and opaque parts, the question may be treated by means of the general integrals (§ 3) by merely limiting the integration to the transparent parts of the aperture.

00The intensity I 2, the quantity with which we are principally concerned, may thus (be expressed I 2 = 3 fcos27rv 2 .dv} 2 2 t 2 These integrals, taken from v =o, are (known as Fresnel's integrals; we will denote them by C and S, so that C = fo cos 27rv 2 .dv, S = fjsinv 2 .dv.

00Cauchy, without the use of Gilbert's integrals, by direct integration by parts.

00(19), 1 abA) ' ' we may write 12= (cos 27rv 2 .dv) 2 + (f sin zirv 2 .dv) 2 (20), or, according to our previous notation, 12 = (2 - C 2 +(z - Sv)2= G2 +H2 Now in the integrals represented by G and H every element diminishes as V increases from zero.

00In the general motion again of the liquid filling a case, when a = b, 52 3 may be replaced by zero, and the equations, hydrodynamical and dynamical, reduce to d =- 2+ 2 J, = 2 x22111, d = 2 2`2 (+/'15-Om) (1 yy y n`t dt a +c dt a +c dt a +c) dc2, a2-1-c2 d122 a2 c2 dt ="2) +a2= G2y 71' dt = 121 1 - a 2 -c 2SJ, (19) of which three integrals are e +777 r z y 2= L -?2J2, (20) (a2 + c2) 2 2 121+14 =M+ 2c2(a2-c2)1 ' (21) 121+522hN = + x24 2,2 and then (dt / 2 = (a2 + c 2) 2(° v 2 - 12171) 2 4C4 2 2 - (+ c2)2?(E+77) (?

00To determine the motion of a jet which issues from a vessel with plane walls, the vector I must be constructed so as to have a constant (to) (II) the liquid (15) 2, integrals;, (29) (30) (I) direction 0 along a plane boundary, and to give a constant skin velocity over the surface of a jet, where the pressure is constant.

00A torsion of the ellipsoidal surface will give rise to a velocity function of the form 4)--- where SZ can be expressed by the elliptic integrals in a similar manner, since dX/P3.

00When no external force acts, the case which we shall consider, there are three integrals of the equations of motion (i.) T =constant, x 2 +x 2 +x 2 =F 2, a constant, (iii.) x1y1 +x2y2+x3y3 =n = GF, a constant; and the dynamical equations in (3) express the fact that x, x, xs.

00Introducing Euler's angles 0, c15, x1= F sin 0 sin 0, x 2 =F sin 0 cos 0, xl+x 2 i =iF sin 0e_, x 3 = F cos 0; sin o t=P sin 4+Q cos 0, dT F sin 2 0d l - dy l + dy 2x = (qx1+ryi)xl +(qx2+ry2)x2 = q (x1 2 +x2 2) +r (xiyi +x2y2) = qF 2 sin 2 0-Fr (FG - x 3 y 3), (16) _Ft (FG _x 323 Frdx3 (17) F x3 X3 elliptic integrals of the third kind.

00In elliptic integrals, the amplitude is the limit of integration when the integral is expressed in the form f 4) 1% I - N 2 sin e 4) d4.

00The above expressions for the capacity of an ellipsoid of three unequal axes are in general elliptic integrals, but they can be evaluated for the reduced cases when the ellipsoid is one of revolution, and hence in the limit either takes the form of a long rod or of a circular disk.

00The following are some examples of cases in which the above methods may be applied to the calculation of areas and integrals.

00Discussions of the approximate calculation of definite integrals will be found in works on the infinitesimal calculus; see e.g.

00His mathematical writings, which account for some forty entries in the Royal Society's catalogue of scientific papers, cover a wide range of subjects, such" s the theory of probabilities, quadratic forms, theory of integrals, gearings, the construction of geographical maps, &c. He also published a Traite de la theorie des nombres.

00The third volume (1816) contains the very elaborate and now well-known tables of the elliptic integrals which were calculated by Legendre himself, with an account of the mode of their construction.

00Legendre had pursued the subject which would now be called elliptic integrals alone from 1786 to 1827, the results of his labours having been almost entirely neglected by his contemporaries, but his work had scarcely appeared in 1827 when the discoveries which were independently made by the two young and as yet unknown mathematicians Abel and Jacobi placed the subject on a new basis, and revolutionized it completely.

00The remainder of the first volume relates to the Eulerian integrals and to quadratures.

00The second volume (1817) relates to the Eulerian integrals, and to various integrals and series, developments, mechanical problems, &c., connected with the integral calculus; this volume contains also a numerical table of the values of the gamma function.

00The latter portion of the second volume of the Traite des fonctions elliptiques (1826) is also devoted to the Eulerian integrals, the table being reproduced.

00In 1788 Legendre published a memoir on double integrals, and in 1809 one on definite integrals.

00They were invented by Gauss to facilitate the computation of elliptic integrals.

00Bezout's method of elimination, the other on the number of integrals of an equation of finite differences.

00In pure mathematics, his most important works were his series of memoirs on definite integrals, and his discussion of Fourier's series, which paved the way for the classical researches of L.

00in the notation of elliptic integrals.

00Riemann's results are contained in the memoirs on " Abelian Integrals," &c. (Crelle, t.

00Considerations such as these have been used for determining the series of values of the independent variable, and the irrational functions thereof in the theory of Abelian integrals, but the theory seems to be worthy of further investigation.

00von Zeipel; the expression of definite integrals as determinants by A.

00Investigation soon showed that certain integrals expressing relations between the motions not only of three but of any number of bodies could be found.

00r 1.2 r1.3 r2.3 The theorems of motion just cited are expressed by seven integrals, or equations expressing a law that certain functions of the variables and of the time remain constant.

00It is remarkable that although the seven integrals were found almost from the beginning of the investigation, no others have since been added; and indeed it has recently been shown that no others exist that can be expressed in an algebraic form.

00Functions of the variables possessing this property of remaining constant are termed integrals.

00computation of these three integrals, a lot of methods are available in the literature.

00Examples of regular functions defined by series or integrals and their analytic continuations.

00implicit differentiation; chain rule; differentiation of functions defined by integrals.

00implicit differentiation; chain rule; differentiation of functions defined by integrals.

00A facility to allow the punching of both transformed integrals and CI coefficients from the full CI code has been introduced.

00In case the software cannot calculate surface integrals analytically it offers the possibility to proceed with a numerical evaluation of the corresponding terms.

00integrals evaluated by RMATRX STG1.

00The MEMORY subdirective sets aside the maximum amount of memory that is not needed for other purposes to hold the 3-center 2-electron integrals.

00Nature of problem: This program reads the radial integrals stored on a permanent tape or disk file by RMATRX STG1.

00Definite and indefinite integrals and the Fundamental Theorem of Integral Calculus.

00The angular integrals are carried out using the methods of Racah algebra.

00With definite integrals the limits of integration can also change.

00The most costly step in the serial 2 nd derivative algorithm is the computation of the 2 nd derivative two-electron integrals.

00The kinetic transport coeffs. are computed from explicit collision integrals and compared favorably with detailed simulations.

00The theory of Feynman path integrals in such theories is a further active area of research here at King's.

00To be able to work with line, surface and volume integrals.

00These computationally intractable sums or integrals can be avoided by using approximate Bayesian methods.

00Second-order odes: constant coefficients, variation of parameters, particular integrals.

00overlap integrals.

00Solution method: The program solves the Cauchy principal value integrals numerically using adaptive Gaussian quadrature.

00Under the general heading "Analysis" occur the subheadings "Foundations of Analysis," with the topics theory of functions of real variables, series and other infinite processes, principles and elements of the differential and of the integral calculus, definite integrals, and calculus of variations; "Theory of Functions of Complex Variables," with the topics functions of one variable and of several variables; "Algebraic Functions and their Integrals," with the topics algebraic functions of one and of several variables, elliptic functions and single theta functions, Abelian integrals; "Other Special Functions," with the topics Euler's, Legendre's, Bessel's and automorphic functions; "Differential Equations," with the topics existence theorems, methods of solution, general theory; "Differential Forms and Differential Invariants," with the topics differential forms, including Pfaffians, transformation of differential forms, including tangential (or contact) transformations, differential invariants; "Analytical Methods connected with Physical Subjects," with the topics harmonic analysis, Fourier's series, the differential equations of applied mathematics, Dirichlet's problem; "Difference Equations and Functional Equations," with the topics recurring series, solution of equations of finite differences and functional equations.

00He attended lectures on the numerical solution of equations and on definite integrals by M.

00He appears to have attended Dirichlet's lectures on theory of numbers, theory of definite integrals, and partial differential equations, and Jacobi's on analytical mechanics and higher algebra.

00He also showed that every equation of an even degree must have at least one real quadratic factor, reduced the solution of linear differential equations to definite integrals, and furnished an elegant method by which the linear partial differential equation of the second order might be solved.

00The integrals are then properly functions of the direction in which the light is to be estimated.

00If when the aperture is given, the wave-length (proportional to k1) varies, the composition of the integrals is unaltered, provided E and n are taken universely proportional to X.

00We will now apply the integrals (2) to the case of a rectangular aperture of width a parallel to x and of width b parallel to y.

00If the grating be composed of alternate transparent and opaque parts, the question may be treated by means of the general integrals (§ 3) by merely limiting the integration to the transparent parts of the aperture.

00The intensity I 2, the quantity with which we are principally concerned, may thus (be expressed I 2 = 3 fcos27rv 2 .dv} 2 2 t 2 These integrals, taken from v =o, are (known as Fresnel's integrals; we will denote them by C and S, so that C = fo cos 27rv 2 .dv, S = fjsinv 2 .dv.

00Cauchy, without the use of Gilbert's integrals, by direct integration by parts.

00(19), 1 abA) ' ' we may write 12= (cos 27rv 2 .dv) 2 + (f sin zirv 2 .dv) 2 (20), or, according to our previous notation, 12 = (2 - C 2 +(z - Sv)2= G2 +H2 Now in the integrals represented by G and H every element diminishes as V increases from zero.

00In the general motion again of the liquid filling a case, when a = b, 52 3 may be replaced by zero, and the equations, hydrodynamical and dynamical, reduce to d =- 2+ 2 J, = 2 x22111, d = 2 2`2 (+/'15-Om) (1 yy y n`t dt a +c dt a +c dt a +c) dc2, a2-1-c2 d122 a2 c2 dt ="2) +a2= G2y 71' dt = 121 1 - a 2 -c 2SJ, (19) of which three integrals are e +777 r z y 2= L -?2J2, (20) (a2 + c2) 2 2 121+14 =M+ 2c2(a2-c2)1 ' (21) 121+522hN = + x24 2,2 and then (dt / 2 = (a2 + c 2) 2(Ã‚° v 2 - 12171) 2 4C4 2 2 - (+ c2)2?(E+77) (?

00To determine the motion of a jet which issues from a vessel with plane walls, the vector I must be constructed so as to have a constant (to) (II) the liquid (15) 2, integrals;, (29) (30) (I) direction 0 along a plane boundary, and to give a constant skin velocity over the surface of a jet, where the pressure is constant.

00A torsion of the ellipsoidal surface will give rise to a velocity function of the form 4)--- where SZ can be expressed by the elliptic integrals in a similar manner, since dX/P3.

00When no external force acts, the case which we shall consider, there are three integrals of the equations of motion (i.) T =constant, x 2 +x 2 +x 2 =F 2, a constant, (iii.) x1y1 +x2y2+x3y3 =n = GF, a constant; and the dynamical equations in (3) express the fact that x, x, xs.

00Introducing Euler's angles 0, c15, x1= F sin 0 sin 0, x 2 =F sin 0 cos 0, xl+x 2 i =iF sin 0e_, x 3 = F cos 0; sin o t=P sin 4+Q cos 0, dT F sin 2 0d l - dy l + dy 2x = (qx1+ryi)xl +(qx2+ry2)x2 = q (x1 2 +x2 2) +r (xiyi +x2y2) = qF 2 sin 2 0-Fr (FG - x 3 y 3), (16) _Ft (FG _x 323 Frdx3 (17) F x3 X3 elliptic integrals of the third kind.

00In elliptic integrals, the amplitude is the limit of integration when the integral is expressed in the form f 4) 1% I - N 2 sin e 4) d4.

00The above expressions for the capacity of an ellipsoid of three unequal axes are in general elliptic integrals, but they can be evaluated for the reduced cases when the ellipsoid is one of revolution, and hence in the limit either takes the form of a long rod or of a circular disk.

00The following are some examples of cases in which the above methods may be applied to the calculation of areas and integrals.

00Discussions of the approximate calculation of definite integrals will be found in works on the infinitesimal calculus; see e.g.

00His mathematical writings, which account for some forty entries in the Royal Society's catalogue of scientific papers, cover a wide range of subjects, such" s the theory of probabilities, quadratic forms, theory of integrals, gearings, the construction of geographical maps, &c. He also published a Traite de la theorie des nombres.

00The third volume (1816) contains the very elaborate and now well-known tables of the elliptic integrals which were calculated by Legendre himself, with an account of the mode of their construction.

00Legendre had pursued the subject which would now be called elliptic integrals alone from 1786 to 1827, the results of his labours having been almost entirely neglected by his contemporaries, but his work had scarcely appeared in 1827 when the discoveries which were independently made by the two young and as yet unknown mathematicians Abel and Jacobi placed the subject on a new basis, and revolutionized it completely.

00The remainder of the first volume relates to the Eulerian integrals and to quadratures.

00The second volume (1817) relates to the Eulerian integrals, and to various integrals and series, developments, mechanical problems, &c., connected with the integral calculus; this volume contains also a numerical table of the values of the gamma function.

00The latter portion of the second volume of the Traite des fonctions elliptiques (1826) is also devoted to the Eulerian integrals, the table being reproduced.

00In 1788 Legendre published a memoir on double integrals, and in 1809 one on definite integrals.

00They were invented by Gauss to facilitate the computation of elliptic integrals.

00To evaluate the second integrals vdp we may subtract a constant b to represent the defect of the volume of the vapour from the ideal volume Rt/p. This gives V' (Po -{-p - p') = Rt log (p/p') - b(p - p').

00Bezout's method of elimination, the other on the number of integrals of an equation of finite differences.

00In pure mathematics, his most important works were his series of memoirs on definite integrals, and his discussion of Fourier's series, which paved the way for the classical researches of L.

00in the notation of elliptic integrals.

00Riemann's results are contained in the memoirs on " Abelian Integrals," &c. (Crelle, t.

00Considerations such as these have been used for determining the series of values of the independent variable, and the irrational functions thereof in the theory of Abelian integrals, but the theory seems to be worthy of further investigation.

00von Zeipel; the expression of definite integrals as determinants by A.

00Investigation soon showed that certain integrals expressing relations between the motions not only of three but of any number of bodies could be found.

00r 1.2 r1.3 r2.3 The theorems of motion just cited are expressed by seven integrals, or equations expressing a law that certain functions of the variables and of the time remain constant.

00It is remarkable that although the seven integrals were found almost from the beginning of the investigation, no others have since been added; and indeed it has recently been shown that no others exist that can be expressed in an algebraic form.

00Functions of the variables possessing this property of remaining constant are termed integrals.

00Solution method: The program solves the Cauchy principal value integrals numerically using adaptive Gaussian quadrature.

00

The word usage examples above have been gathered from various sources to reflect current and historial usage. They do not represent the opinions of YourDictionary.com.