This website uses cookies to ensure you get the best experience. Learn more

gyration

which we shall meet with presently as the ellipsoid of gyration at G.

1012In the case of an axial moment, the square root of the resulting mean square is called the radius of gyration of the system about the axis in question.

67Since I~=Ii., I~=o, we deduce 100=3/4Ma2, ~ =4MaZ; hence the value of the squared radius of gyration isfora diameter 3/4ai, and for the axis of symmetry 3/4af.

68Since I~=Ii., I~=o, we deduce 100=3/4Ma2, ~ =4MaZ; hence the value of the squared radius of gyration isfora diameter 3/4ai, and for the axis of symmetry 3/4af.

68the square of the radius of gyration with respect to a diameter is ia2.

69from its axis (0), if the radius of gyration about a longitudinal axis through G, aiid 0 the inclin - ation of OG to the vertical, FIG.

69The squares of the radii of gyration about the principal axes at P may be denoted by k,i+k32, k,f + ki2, k12 + k,2 hence by (32) and (35), they are rfOi, r2Oi, r20s, respectively.

47R is called the radius of gyration of the body with regard to an axi:

37The radius of gyration of the section is 2a 2.

38This is called the ellipsoid of gyration at 0; it was introduced into the theory by J.

25where K is the radius of gyration about the axis of symmetry, a is the constant distance of G from the plane, and R, F are the normal and tangential components of the reaction of the plane, as shown in fig.

26The formula (16) expresses that the squared radius of gyration about any axis (Ox) exceeds the squared radius of gyration about a parallel axis through G by the square of the distance between the two axes.

14It possesses thi property that the radius of gyration about any diameter is half thi distance between the two tangents which are parallel to that diameter, In the case of a uniform triangular plate it may be shown that thi momental ellipse at G is concentric, similar and similarly situatec to the ellipse which touches the sides of the triangle at their middle points.

14If M be the total mass, k the radius of gyration (~ ii) about the axis, we have sin 0, (3)

15If K be the radius of gyration about a parallel axis through G, we have kf=K2+h2 by If (16), and therefore i=h+K1/h, whence GO.GP=K2.

15After a certain discount for friction and the recoil of the gun, the net work realized by the powder-gas as the shot advances AM is represented by the area Acpm, and this is equated to the kinetic energy e of the shot, in foot-tons, (I) e d2 I + p, a in which the factor 4(k 2 /d 2)tan 2 S represents the fraction due to the rotation of the shot, of diameter d and axial radius of gyration k, and S represents the angle of the rifling; this factor may be ignored in the subsequent calculations as small, less than I %.

16The varying direction of the inclining couple Pc may be realized by swinging the weight P from a crane on the ship, in a circle of radius c. But if the weight P was lowered on the ship from a crane on shore, the vessel would sink bodily a distance P/wA if P was deposited over F; but deposited anywhere else, say over Q on the water-line area, the ship would turn about a line the antipolar of Q with respect to the confocal ellipse, parallel to FF', at a distance FK from F FK= (k2-hV/A)/FQ sin QFF' (2) through an angle 0 or a slope of one in m, given by P sin B= m wA FK - W'Ak 2V hV FQ sin QFF', (3) where k denotes the radius of gyration about FF' of the water-line area.

00gyration of larger polymers.

00gyration of the section.

00The automatic choice of the cut-off radius for RF is twice the radius of gyration.

00The varying direction of the inclining couple Pc may be realized by swinging the weight P from a crane on the ship, in a circle of radius c. But if the weight P was lowered on the ship from a crane on shore, the vessel would sink bodily a distance P/wA if P was deposited over F; but deposited anywhere else, say over Q on the water-line area, the ship would turn about a line the antipolar of Q with respect to the confocal ellipse, parallel to FF', at a distance FK from F FK= (k2-hV/A)/FQ sin QFF' (2) through an angle 0 or a slope of one in m, given by P sin B= m wA FK - W'Ak 2V hV FQ sin QFF', (3) where k denotes the radius of gyration about FF' of the water-line area.

00The velocity of a liquid particle is thus (a 2 - b 2)/(a 2 +b 2) of what it would be if the liquid was frozen and rotating bodily with the ellipse; and so the effective angular inertia of the liquid is (a 2 -b 2) 2 /(a 2 +b 2) 2 of the solid; and the effective radius of gyration, solid and liquid, is given by k 2 = 4 (a 2 2), and 4 (a 2 For the liquid in the interspace between a and n, m ch 2(0-a) sin 2E 4) 1 4Rc 2 sh 2n sin 2E (a2_ b2)I(a2+ b2) = I/th 2 (na)th 2n; (8) and the effective k 2 of the liquid is reduced to 4c 2 /th 2 (n-a)sh 2n, (9) which becomes 4c 2 /sh 2n = s (a 2 - b 2)/ab, when a =00, and the liquid surrounds the ellipse n to infinity.

00the moment of inertia of the body about the axis, denoted by But if is the moment of inertia of the body about a mean diameter, and w the angular velocity about it generated by an impluse couple M, and M' is the couple required to set the surrounding medium in motion, supposed of effective radius of gyration k', If the shot is spinning about its axis with angular velocity p, and is precessing steadily at a rate about a line parallel to the resultant momentum F at an angle 0, the velocity of the vector of angular momentum, as in the case of a top, is C i pµ sin 0- C2µ 2 sin 0 cos 0; (4) and equating this to the impressed couple (multiplied by g), that is, to gN = (c 1 -c 2)c2u 2 tan 0, (5) and dividing out sin 0, which equated to zero would imply perfect centring, we obtain C21 2 cos 0- (c 2 -c 1)c2u 2 sec 0 =o.

00The radius of gyration of the section is 2a 2.

00After a certain discount for friction and the recoil of the gun, the net work realized by the powder-gas as the shot advances AM is represented by the area Acpm, and this is equated to the kinetic energy e of the shot, in foot-tons, (I) e d2 I + p, a in which the factor 4(k 2 /d 2)tan 2 S represents the fraction due to the rotation of the shot, of diameter d and axial radius of gyration k, and S represents the angle of the rifling; this factor may be ignored in the subsequent calculations as small, less than I %.

00In the case of an axial moment, the square root of the resulting mean square is called the radius of gyration of the system about the axis in question.

00the square of the radius of gyration with respect to a diameter is ia2.

00The formula (16) expresses that the squared radius of gyration about any axis (Ox) exceeds the squared radius of gyration about a parallel axis through G by the square of the distance between the two axes.

00which we shall meet with presently as the ellipsoid of gyration at G.

00The squares of the radii of gyration about the principal axes at P may be denoted by k,i+k32, k,f + ki2, k12 + k,2 hence by (32) and (35), they are rfOi, r2Oi, r20s, respectively.

00This is called the ellipsoid of gyration at 0; it was introduced into the theory by J.

00It possesses thi property that the radius of gyration about any diameter is half thi distance between the two tangents which are parallel to that diameter, In the case of a uniform triangular plate it may be shown that thi momental ellipse at G is concentric, similar and similarly situatec to the ellipse which touches the sides of the triangle at their middle points.

00If M be the total mass, k the radius of gyration (~ ii) about the axis, we have sin 0, (3)

00If K be the radius of gyration about a parallel axis through G, we have kf=K2+h2 by If (16), and therefore i=h+K1/h, whence GO.GP=K2.

00where K is the radius of gyration about the axis of symmetry, a is the constant distance of G from the plane, and R, F are the normal and tangential components of the reaction of the plane, as shown in fig.

00from its axis (0), if the radius of gyration about a longitudinal axis through G, aiid 0 the inclin - ation of OG to the vertical, FIG.

00Let W be the weight of a flywheel, R its radius of gyration, ai its maximum, aj its minimum, and A=~1/8(a1+ai) its mean angular velocity.

00R is called the radius of gyration of the body with regard to an axi:

00The automatic choice of the cut-off radius for RF is twice the radius of gyration.

00If k be the radius of gyration about p we find k2 =2Xarea AHEDCBAXONap, where a$ is the line in the force-diagram which represents the sum of the masses, and ON is the distance of the pole 0 from this line.

04Let W be the weight of a flywheel, R its radius of gyration, ai its maximum, aj its minimum, and A=~1/8(a1+ai) its mean angular velocity.

04If k be the radius of gyration about p we find k2 =2Xarea AHEDCBAXONap, where a$ is the line in the force-diagram which represents the sum of the masses, and ON is the distance of the pole 0 from this line.

04The velocity of a liquid particle is thus (a 2 - b 2)/(a 2 +b 2) of what it would be if the liquid was frozen and rotating bodily with the ellipse; and so the effective angular inertia of the liquid is (a 2 -b 2) 2 /(a 2 +b 2) 2 of the solid; and the effective radius of gyration, solid and liquid, is given by k 2 = 4 (a 2 2), and 4 (a 2 For the liquid in the interspace between a and n, m ch 2(0-a) sin 2E 4) 1 4Rc 2 sh 2n sin 2E (a2_ b2)I(a2+ b2) = I/th 2 (na)th 2n; (8) and the effective k 2 of the liquid is reduced to 4c 2 /th 2 (n-a)sh 2n, (9) which becomes 4c 2 /sh 2n = s (a 2 - b 2)/ab, when a =00, and the liquid surrounds the ellipse n to infinity.

06the moment of inertia of the body about the axis, denoted by But if is the moment of inertia of the body about a mean diameter, and w the angular velocity about it generated by an impluse couple M, and M' is the couple required to set the surrounding medium in motion, supposed of effective radius of gyration k', If the shot is spinning about its axis with angular velocity p, and is precessing steadily at a rate about a line parallel to the resultant momentum F at an angle 0, the velocity of the vector of angular momentum, as in the case of a top, is C i pµ sin 0- C2µ 2 sin 0 cos 0; (4) and equating this to the impressed couple (multiplied by g), that is, to gN = (c 1 -c 2)c2u 2 tan 0, (5) and dividing out sin 0, which equated to zero would imply perfect centring, we obtain C21 2 cos 0- (c 2 -c 1)c2u 2 sec 0 =o.

06

The word usage examples above have been gathered from various sources to reflect current and historial usage. They do not represent the opinions of YourDictionary.com.