# Gyration Sentence Examples

In the case of an axial moment, the square root of the resulting mean square is called the radius of

**gyration**of the system about the axis in question.The automatic choice of the cut-off radius for RF is twice the radius of

**gyration**.The varying direction of the inclining couple Pc may be realized by swinging the weight P from a crane on the ship, in a circle of radius c. But if the weight P was lowered on the ship from a crane on shore, the vessel would sink bodily a distance P/wA if P was deposited over F; but deposited anywhere else, say over Q on the water-line area, the ship would turn about a line the antipolar of Q with respect to the confocal ellipse, parallel to FF', at a distance FK from F FK= (k2-hV/A)/FQ sin QFF' (2) through an angle 0 or a slope of one in m, given by P sin B= m wA FK - W'Ak 2V hV FQ sin QFF', (3) where k denotes the radius of

**gyration**about FF' of the water-line area.The formula (16) expresses that the squared radius of

**gyration**about any axis (Ox) exceeds the squared radius of**gyration**about a parallel axis through G by the square of the distance between the two axes.The squares of the radii of

**gyration**about the principal axes at P may be denoted by k,i+k32, k,f + ki2, k12 + k,2 hence by (32) and (35), they are rfOi, r2Oi, r20s, respectively.AdvertisementIt possesses thi property that the radius of

**gyration**about any diameter is half thi distance between the two tangents which are parallel to that diameter, In the case of a uniform triangular plate it may be shown that thi momental ellipse at G is concentric, similar and similarly situatec to the ellipse which touches the sides of the triangle at their middle points.If k be the radius of

**gyration**about p we find k2 =2Xarea AHEDCBAXONap, where a$ is the line in the force-diagram which represents the sum of the masses, and ON is the distance of the pole 0 from this line.If K be the radius of

**gyration**about a parallel axis through G, we have kf=K2+h2 by If (16), and therefore i=h+K1/h, whence GO.GP=K2.The radius of

**gyration**of the section is 2a 2.After a certain discount for friction and the recoil of the gun, the net work realized by the powder-gas as the shot advances AM is represented by the area Acpm, and this is equated to the kinetic energy e of the shot, in foot-tons, (I) e d2 I + p, a in which the factor 4(k 2 /d 2)tan 2 S represents the fraction due to the rotation of the shot, of diameter d and axial radius of

**gyration**k, and S represents the angle of the rifling; this factor may be ignored in the subsequent calculations as small, less than I %.AdvertisementThe velocity of a liquid particle is thus (a 2 - b 2)/(a 2 +b 2) of what it would be if the liquid was frozen and rotating bodily with the ellipse; and so the effective angular inertia of the liquid is (a 2 -b 2) 2 /(a 2 +b 2) 2 of the solid; and the effective radius of

**gyration**, solid and liquid, is given by k 2 = 4 (a 2 2), and 4 (a 2 For the liquid in the interspace between a and n, m ch 2(0-a) sin 2E 4) 1 4Rc 2 sh 2n sin 2E (a2_ b2)I(a2+ b2) = I/th 2 (na)th 2n; (8) and the effective k 2 of the liquid is reduced to 4c 2 /th 2 (n-a)sh 2n, (9) which becomes 4c 2 /sh 2n = s (a 2 - b 2)/ab, when a =00, and the liquid surrounds the ellipse n to infinity.