Caoutchouc Sentence Examples
Nux vomica, gamboge, caoutchouc, cardamoms, teak and other valuable woods and gums are among the natural products.
Under certain conditions, as when latex is allowed to stand or is centrifugalized, a cream is obtained consisting of the liquid globules, which may be washed free from proteid without change, but, either by mechanical agitation or by the addition of acid or other chemical agent, the liquid gradually solidifies to a mass of solid caoutchouc. The phenomenon therefore resembles the change known to the chemist as polymerization, by which through molecular aggregation a liquid may pass into a solid without change in its empirical composition.
The globules which furnish the cream gradually pass on standing into solid caoutchouc, a process which is facilitated by rapid stirring, or by the addition of an acid or other chemical agent.
If the latex is warmed or an acid, an alkali or astringent plant juice is added to it, " coagulation " usually takes place more or less readily, the caoutchouc separating in solid flakes or curds.
When exposed to air the latex gradually undergoes putrefactive changes accompanied by coagulation of the caoutchouc. The addition of a small quantity of ammonia or of formalin to some latices usually has the effect of preserving them for a considerable time.
The globules in the latex are liquid, and the phenomenon of coagulation would seem to consist in the passage of this liquid into solid caoutchouc through the kind of change known as polymerization or condensation, in which a liquid passes into solid without alteration of composition or by condensation with the elimination of the elements of water.
The effect of chemical agents in producing coagulation are in consonance with what is known of other instances of polymeric or condensation changes, whilst the fact that the collection of globules separated by creaming after thorough washing, and therefore removal of all proteid, is susceptible of solidification into caoutchouc by a merely mechanical act such as churning, strongly supports the view that the character of the change is distinct from that of any alteration which may occur in the proteid constituents of the latex.
The existence of caoutchouc or rubber was first observed soon after the discovery of America.
It was not until the middle of the 18th century that the trees which yielded caoutchouc were identified, chiefly by French observers.
This has been ascribed by some to the presence in " wild " rubber of certain impurities derived either from the latex or introduced during the preparation of the rubber which are thought to enhance the physical properties of the caoutchouc. It is more probable, however,.
AdvertisementToo frequent tapping leads to the production of latex poor in caoutchouc, whilst tapping of trees before they are six or seven years old, and from 20-25 in.
As the removal of the impurities of the latex is one of the essential points to be aimed at, it was thought that the use of a centrifugal machine to separate the caoutchouc as a cream from the watery part of the latex would prove to be a satisfactory process.
The coagulated rubber separates as a mass of spongy caoutchouc. If the coagulation has been effected in shallow dishes, the rubber is obtained in a thin cake of similar shape known as a " biscuit."
Rubber is chiefly composed of the soft, solid, elastic substance known as caoutchouc. It is usually assumed that this substance is present as such in the latex.
The globules in the latex, however, consist more probably of a distinct liquid substance which readily changes into the solid caoutchouc. The coagulation of the latex often originates with the " curding " of the proteids present, and this alteration in the proteid leads to the solidification of the globules into caoutchouc. The latter, however, is probably a distinct effect.
AdvertisementSo far the chemical nature of the liquid globules of the latex is unknown, and the exact character of the change into solid caoutchouc remains to be determined.
In connexion with the production of rubber the most important factor is the proportion of caoutchouc it contains.
There is no feasible method at present known of preventing the inclusion of the resin of the latex with the rubber during coagulation, and although the separation of the resin from the solid caoutchouc by means of solvents is possible, it is not practicable or profitable commercially.
At present the caoutchouc present in crude rubber is usually estimated indirectly, and it is possible that what generally passes as caoutchouc may be in some instances a mixture of similar chemical substances, which if separated would be found to differ in those physical properties on which the technical value of rubber depends.
It is already certain that some commercial rubbers contain a variable proportion of a substance of the nature of caoutchouc, but having different properties.
AdvertisementTrue caoutchouc, the principal constituent of all rubbers, is probably essentially one and the same substance, from whatever botanical source it may have been derived.
The properties of caoutchouc clearly show, however, that its actual molecular structure is considerably more complex than is represented by the empirical formula, and that it is to be regarded as the polymer of a terpene or similar hydrocarbon and composed of a cluster of at least ten or twenty molecules of the formula C5H8.
When solid caoutchouc is strongly heated it breaks down, without change in its ultimate composition, into a number of simpler liquid hydrocarbons of the terpene class (dipentene, di-isoprene, isoprene, &c.), of which one, isoprene (C5H8), is of simpler structure than oil of turpentine (C 10 H 16), from which it can also be obtained by the action of an intense heat.
When this volatile liquid hydrocarbon (isoprene) is allowed ro stand for some time in a closed bottle, it gradually passes into a substance having the principal properties of natural caoutchouc. The same change of isoprene into caoutchouc may also be effected by the action of certain chemical agents.
It may therefore be said that caoutchouc has been already artificially or synthetically prepared, and the possibility of producing synthetic rubber cheaply on a commercial scale remains the only problem.
AdvertisementAt present the change of isoprene into caoutchouc is mainly of scientific interest in indicating possibilities with regard to the conversion of the liquid globules of the latex into rubber and to the formation of rubber by plants.
The exact chemical nature of caoutchouc is, however, not determined, and recent researches point to the view that its molecular structure may even be somewhat different from that of the terpenes.
The exact manner in which isoprene passes into caoutchouc is also not understood.
These problems are, however, certain to be solved in the near future, and then probably caoutchouc may be formed in other ways than from isoprene.
The chief properties of caoutchouc and its employment for technical purposes may now be considered.
Caoutchouc is not dissolved by water or alcohol, and is not affected except by the strongest acids.
Vegetable and other oils rapidly penetrate caoutchouc and lead to deterioration of its properties.
Sulphur when warmed with caoutchouc combines with it, and on this fact the vulcanization of rubber depends, and also the production, with an excess of sulphur, of the hard black material known as vulcanite or ebonite.
Caoutchouc is a soft elastic resilient solid.
In this respect it differs from gutta-percha, which, like caoutchouc, is derived from the latices of certain plants.
The technical value of caoutchouc chiefly depends on the extent to which it is capable of being stretched without breaking, and the extent to which it at once returns to its original dimensions.
Caoutchouc is a bad conductor of heat and electricity, and alone or mixed with other materials is employed as an electrical insulator.
When caoutchouc is heated slightly above the temperature of boiling water it becomes softer and loses much of its elasticity, which, however, it recoveres on cooling.
Similar products are also formed by heating gutta-percha which closely resembles caoutchouc in its chemical structure.
If ozone is passed into a solution of rubber in chloroform the caoutchouc combines with a molecule of ozone forming a compound of the empirical composition C 5 H 8 O 8.
The hydrocarbon of gutta-percha yields similar results and is therefore closely related to caoutchouc.
The study of the action of ozone on caoutchouc has thrown new light on the complex question of the chemical structure of this substance, and discloses relationships with the sugars and other carbohydrates from certain of which levulinic acid is obtained by oxidation.
Caoutchouc, like other "unsaturated" molecules, forms compounds with chlorine, bromine, iodine and sulphur.
When the vulcanization of rubber is carried too far, from the presence of a very large proportion of sulphur and an unduly long action of heat, the caoutchouc becomes hard, horn-like, and often black.
It has a strong and characteristic odour, and a hot sweetish taste, is soluble in ten parts of water, and in all proportions in alcohol, and dissolves bromine, iodine, and, in small quantities, sulphur and phosphorus, also the volatile oils, most fatty and resinous substances, guncotton, caoutchouc and certain of the vegetable alkaloids.
Subordinate products for exports include cutch dye, caoutchouc or india-rubber, cotton, petroleum and jade.
The Milanese manufactures of articles in caoutchouc and of electric cables have acquired a world-wide reputation.
The principal exports from all the regencies alike are black and white pepper, bamboo (rotan), gums, caoutchouc, copra, nutmegs, mace and gambir.
The process of inserting white hairs is called in the trade "pointing," and is either done by stitching them in with a needle or by adhesive caoutchouc.
It is also formed in the destructive distillation of many substances, as wood, coal, caoutchouc, bones, resin and the fixed oils.
Caoutchouc, &c 7,379,600 4,616,400
Caoutchouc wares..
Hardened caoutchouc and wares thereof,.
By this process of preparation a considerable portion of the narcotine, caoutchouc, resin, oil or fatty and insoluble matters are removed, and the prolonged boiling, evaporating and baking over a naked fire tend to lessen the amount of alkaloids present in the extract.
The d-form is found as a methyl ether in pirate (from the juice of Pinus lambertina, and of caoutchouc from Mateza roritina of Madagascar), from which it may be obtained by heating with hydriodic acid.
A dimethyl ether of inactive inosite is dambonite which occurs in caoutchouc from Gabon.
Hemiterpenes The best known is Isoprene, C 5 H 8, which is obtained on distilling caoutchouc or gutta-percha.
Numerous other substances are also found in the cytoplasm, such as tannin, fats and oil, resins, mucilage, caoutchouc, guttapercha, sulphur and calcium oxalate crystals.
The principal industry is the collection of caoutchouc (see Rubber) from the rubber vines, which exist in seemingly inexhaustible quantities.
It is almost insoluble in water, is miscible with absolute alcohol and ether, and dissolves sulphur, phosphorus, resins and caoutchouc. On exposure to the air it dries to a solid resin, and absorbing oxygen gives off ozone - a reaction utilized in the disinfectant called "Sanitas."
Of the suspended substances, grains of caoutchouc, drops of resin and oil, proteid crystals and starch grains may be mentioned.
Carbon bisulphide is used as a solvent for caoutchouc, for extracting essential oils, as a germicide, and as an insecticide.
The trees and plants whose latices furnish caoutchouc in considerable quantity chiefly belong to the natural orders Euphorbiaceae, Urticaceae, Apocynaceae, Asclepiadaceae.