This website uses cookies to ensure you get the best experience. Learn more

bx

It may be written in the form n n-1 2 ax 1 +bx1 x2 +cx 1 x 2 + ...; or in the form n n n=1 n n-2 2 +(1)bx x2+ ?

00may be a simultaneous invariant of a number of different forms az', bx 2, cx 3, ..., where n1, n 2, n3, ...

00- We have seen that (ab) is a simultaneous invariant of the two different linear forms a x, bx, and we observe that (ab) is equivalent to where f =a x, 4)=b.

00The two forms ax, bx, or of, 0, may be identical; we then have the kth transvectant of a form over itself which may, or may not, vanish identically; and, in the latter case, is a covariant of the single form.

00The process of transvection is connected with the operations 12; for?k (a m b n) = (ab)kam-kbn-k, (x y x y or S 2 k (a x by) x = 4))k; so also is the polar process, for since f k m-k k k n - k k y = a x by, 4)y = bx by, if we take the k th transvectant of f i x; over 4 k, regarding y,, y 2 as the variables, (f k, 4)y) k (ab) ka x -kb k (f, 15)k; or the k th transvectant of the k th polars, in regard to y, is equal to the kth transvectant of the forms. Moreover, the kth transvectant (ab) k a m-k b: -k is derivable from the kth polar of ax, viz.

00First observe that with f x =a: = b z = ï¿½ï¿½ï¿½,f1 = a l a z ', f 2 = a 2 az-', f x =f,x i +f 2 x i, we find (ab) - (a f) bx - (b f) ax.

00Moreover the second term on the left contains (a f)' c -2b z 2 = 2 (a f) k-2b x 2 - (b) /0-2a 2 ï¿½ if k be uneven, and (af)?'bx (i f) of) '-la if k be even; in either case the factor (af) bx - (bf) ax = (ab) f, and therefore (n-k),bk+1 +Mï¿½f = k(n-2)f.(uf)uxn-2k-1; and 4 ' +1 is seen to be of the form f .14+1.

00If ai, bx, cx be different forms we obtain, after development of the squared determinant and conversion to the real form (employing single and double dashes to distinguish the real coefficients of bx and cz), a(b'c"+b"c'-2 f'f") +b(c'a"+c"a'-2g'g") +c(a' +a"b'-2h'h")+2f(g'h"+g"h'-a' + 2g (h ' f"+h"f'-b'g"-b"g')+2h(f'g"+f"g'-c'h"-c"h'); a simultaneous invariant of the three forms, and now suppressing the dashes we obtain 6 (abc+2fgh -af t - bg 2 -ch2), the expression in brackets being the S well-known invariant of az, the vanishing of which expresses the condition that the form may break up into two linear factors, or, geometrically, that the conic may represent two right lines.

00To assist us in handling the symbolic products we have not only the identity (ab) cx + (bc) a x + (ca) bx =0, but also (ab) x x+ (b x) a + (ax) b x = 0, (ab)a+(bc)a s +(ca)a b = 0, and many others which may be derived from these in the manner which will be familiar to students of the works of Aronhold, Clebsch and Gordan.

00bX(2a b).

00m _ c Q du dO dt - rrqu 2r qu AB _ Q du L bq (u -a') +V (b -a')1,l (a -u)11/ndu) L 1,1 (a-a/),,1 (u-b), f u Along the wall Bx, cos n0 =I, sin n0 =o, b >u>o ch nSt = ch log () n=, , fb-a?, ?

00- 2 To show that the area of a cross-section of a - prismoid is of the form ax e -{- bx -{- c, where x is the distance of the section from one end, we may proceed as in § 27.

00The load on an element bx of the beam may be represented by wbx, where - w is in general a function of x.

00Bx.)

00Consider the general quadratic equation ax 2 + bx + c = 0 where a 0.

00ax n, say, breed successfully and that bx n 2 die from overcrowding.

00selector specified in BX is not a code segment or is invalid.

00It may be written in the form n n-1 2 ax 1 +bx1 x2 +cx 1 x 2 + ...; or in the form n n n=1 n n-2 2 +(1)bx x2+ ?

00may be a simultaneous invariant of a number of different forms az', bx 2, cx 3, ..., where n1, n 2, n3, ...

00- We have seen that (ab) is a simultaneous invariant of the two different linear forms a x, bx, and we observe that (ab) is equivalent to where f =a x, 4)=b.

00The two forms ax, bx, or of, 0, may be identical; we then have the kth transvectant of a form over itself which may, or may not, vanish identically; and, in the latter case, is a covariant of the single form.

00The process of transvection is connected with the operations 12; for?k (a m b n) = (ab)kam-kbn-k, (x y x y or S 2 k (a x by) x = 4))k; so also is the polar process, for since f k m-k k k n - k k y = a x by, 4)y = bx by, if we take the k th transvectant of f i x; over 4 k, regarding y,, y 2 as the variables, (f k, 4)y) k (ab) ka x -kb k (f, 15)k; or the k th transvectant of the k th polars, in regard to y, is equal to the kth transvectant of the forms. Moreover, the kth transvectant (ab) k a m-k b: -k is derivable from the kth polar of ax, viz.

00Put M 1 For M, N I For N, And Multiply Through By (Ab); Then { (F, C6) } = (Ab) A X 2A Y B X 1 M N I 2 (Xy), ?) 2, = (A B)Ax 1B X 2B Y L I Multiply By Cp 1 And For Y L, Y2 Write C 2, C1; Then The Right Hand Side Becomes (Ab)(Bc)Am Lbn 2Cp 1 M I C P (F?) 2 M { N2 X, Of Which The First Term, Writing C P =, ,T, Is Mn 2 A B (Ab)(Bc)Axcx 1 M 2 N 2 P 2 2222 2 2 _2 A X B X C (Bc) A C Bx M N 2 2 2 M2Ã‚°N 2 N 2 M 2 2 A X (Bc) B C P C P (Ab) A B B(Ac) Ax Cp 2 = 2 (04) 2 1 (F,0) 2.4 (F,Y') 2 Ã¯¿½?; And, If (F,4)) 1 = Km " 2, (F??) 1 1 M N S X X X Af A _Af A Ax, Ax Ax Ax1 Observing That And This, On Writing C 2, C 1 For Y 11 Y 21 Becomes (Kc) K X 'T 3C X 1= (F,0 1 ', G 1; Ã¯¿½'Ã¯¿½1(F,O) 1 M 1=1 M 2 0`,4)) 2 0, T (Fm 2.4 (0,0 2 .F ' And Thence It Appears That The First Transvectant Of (F, (P) 1 Over 4) Is Always Expressible By Means Of Forms Of Lower Degree In The Coefficients Wherever Each Of The Forms F, 0, 4, Is Of Higher Degree Than The First In X 1, X2.

00First observe that with f x =a: = b z = Ã¯¿½Ã¯¿½Ã¯¿½,f1 = a l a z ', f 2 = a 2 az-', f x =f,x i +f 2 x i, we find (ab) - (a f) bx - (b f) ax.

00Moreover the second term on the left contains (a f)' c -2b z 2 = 2 (a f) k-2b x 2 - (b) /0-2a 2 Ã¯¿½ if k be uneven, and (af)?'bx (i f) of) '-la if k be even; in either case the factor (af) bx - (bf) ax = (ab) f, and therefore (n-k),bk+1 +MÃ¯¿½f = k(n-2)f.(uf)uxn-2k-1; and 4 ' +1 is seen to be of the form f .14+1.

00determinant factors (abc), (abd), (bce), etc...., and other factors az, bx, cx,...

00If ai, bx, cx be different forms we obtain, after development of the squared determinant and conversion to the real form (employing single and double dashes to distinguish the real coefficients of bx and cz), a(b'c"+b"c'-2 f'f") +b(c'a"+c"a'-2g'g") +c(a' +a"b'-2h'h")+2f(g'h"+g"h'-a' + 2g (h ' f"+h"f'-b'g"-b"g')+2h(f'g"+f"g'-c'h"-c"h'); a simultaneous invariant of the three forms, and now suppressing the dashes we obtain 6 (abc+2fgh -af t - bg 2 -ch2), the expression in brackets being the S well-known invariant of az, the vanishing of which expresses the condition that the form may break up into two linear factors, or, geometrically, that the conic may represent two right lines.

00To assist us in handling the symbolic products we have not only the identity (ab) cx + (bc) a x + (ca) bx =0, but also (ab) x x+ (b x) a + (ax) b x = 0, (ab)a+(bc)a s +(ca)a b = 0, and many others which may be derived from these in the manner which will be familiar to students of the works of Aronhold, Clebsch and Gordan.

00bX(2a b).

00m _ c Q du dO dt - rrqu 2r qu AB _ Q du L bq (u -a') +V (b -a')1,l (a -u)11/ndu) L 1,1 (a-a/),,1 (u-b), f u Along the wall Bx, cos n0 =I, sin n0 =o, b >u>o ch nSt = ch log () n=, , fb-a?, ?

00- 2 To show that the area of a cross-section of a - prismoid is of the form ax e -{- bx -{- c, where x is the distance of the section from one end, we may proceed as in § 27.

00The load on an element bx of the beam may be represented by wbx, where - w is in general a function of x.

00Programmer 's Notes: This function will fail if the selector specified in BX is not a code segment or is invalid.

00

The word usage examples above have been gathered from various sources to reflect current and historial usage. They do not represent the opinions of YourDictionary.com.