This website uses cookies to ensure you get the best experience. Learn more

For an acnodal cubic the six imaginery inflections disappear, and there remain three real inflections lying in a line.

00The oval may unite itself with the infinite branch, or it may dwindle into a point, and we have the crunodal and the acnodal forms respectively; or if simultaneously the oval dwindles into a point and unites itself to the infinite branch, we have the cuspidal form.

00crunodal or acnodal), or cuspidal; and we see further that there are two kinds of non-singular curves, the complex and the simplex.

00There is thus a complete division into the five kinds, the complex, simplex, crunodal, acnodal and cuspidal.

00Each singular kind presents itself as a limit separating two kinds of inferior singularity; the cuspidal separates the crunodal and the acnodal, and these last separate from each other the complex and the simplex.

00And it then appears that there are two kinds of non-singular cubic cones, viz, the simplex, consisting of a single sheet, and the complex, consisting of a single sheet and a twin-pair sheet; and we thence obtain (as for cubic curves) the crunodal, the acnodal and the cuspidal kinds of cubic cones.

00The singular kinds arise as before; in the crunodal and the cuspidal kinds the whole curve is an odd circuit, but in an acnodal kind the acnode must be regarded as an even circuit.

00For an acnodal cubic the six imaginery inflections disappear, and there remain three real inflections lying in a line.

00The oval may unite itself with the infinite branch, or it may dwindle into a point, and we have the crunodal and the acnodal forms respectively; or if simultaneously the oval dwindles into a point and unites itself to the infinite branch, we have the cuspidal form.

00crunodal or acnodal), or cuspidal; and we see further that there are two kinds of non-singular curves, the complex and the simplex.

00There is thus a complete division into the five kinds, the complex, simplex, crunodal, acnodal and cuspidal.

00Each singular kind presents itself as a limit separating two kinds of inferior singularity; the cuspidal separates the crunodal and the acnodal, and these last separate from each other the complex and the simplex.

00And it then appears that there are two kinds of non-singular cubic cones, viz, the simplex, consisting of a single sheet, and the complex, consisting of a single sheet and a twin-pair sheet; and we thence obtain (as for cubic curves) the crunodal, the acnodal and the cuspidal kinds of cubic cones.

00The singular kinds arise as before; in the crunodal and the cuspidal kinds the whole curve is an odd circuit, but in an acnodal kind the acnode must be regarded as an even circuit.

00

The word usage examples above have been gathered from various sources to reflect current and historial usage. They do not represent the opinions of YourDictionary.com.