# hyperbolas Sentence Examples

• - Employ the elliptic coordinates n,, and -=n+Vi, such that z=cch?, cchncos,y=cshnsin-; (1) then the curves for which n and are constant are confocal ellipses and hyperbolas, and -d(n,) =c 2 (ch 2 n - cost) = 2c 2 (ch2n-cos2) = r i r 2 = OD 2, (2) if OD is the semi-diameter conjugate to OP, and ri, r 2 the focal distances, rl,r2 = c (ch n cos 0; r 2 = x2 +y2 = c 2 (ch 2 n - sin20 = 1c 2 (ch 2 7 7 +cos 2?).

• The isothermals are approximately equilateral hyperbolas (pv= constant), with the axes of p and v for asymptotes, for a gas or unsaturated vapour, but coincide with the isopiestics for a saturated vapour in presence of its liquid.

• The genera may be arranged as follows: 1,2,3,4 redundant hyperbolas 5,6 defective hyperbolas 7,8 parabolic hyperbolas 9 hyperbolisms of hyperbola To „ II „ „ parabola 12 trident curve 13 divergent parabolas 14 cubic parabola; and thus arranged they correspond to the different relations of the line infinity to the curve.

• First, if the three intersections by the line infinity are all distinct, we have the hyperbolas; if the points are real, the redundant hyperbolas, with three hyperbolic branches; but if only one of them is real, the defective hyperbolas, with one hyperbolic branch.

• Secondly, if two of the intersections coincide, say if the line infinity meets the curve in a onefold point and a twofold point, both of them real, then there is always one asymptote: the line infinity may at the twofold point touch the curve, and we have the parabolic hyperbolas; or the twofold point may be a singular point, - viz., a crunode giving the hyperbolisms of the hyperbola; an acnode, giving the hyperbolisms of the ellipse; or a cusp, giving the hyperbolisms of the parabola.

• It is to be remarked that the classification mixes together non-singular and singular curves, in fact, the five kinds presently referred to: thus the hyperbolas and the divergent parabolas include curves of every kind, the separation being made in the species; the hyperbolisms of the hyperbola and ellipse, and the trident curve, are nodal; the hyperbolisms of the parabola, and the cubical parabola, are cuspidal.

• - Employ the elliptic coordinates n,, and -=n+Vi, such that z=cch?, cchncos,y=cshnsin-; (1) then the curves for which n and are constant are confocal ellipses and hyperbolas, and -d(n,) =c 2 (ch 2 n - cost) = 2c 2 (ch2n-cos2) = r i r 2 = OD 2, (2) if OD is the semi-diameter conjugate to OP, and ri, r 2 the focal distances, rl,r2 = c (ch n cos 0; r 2 = x2 +y2 = c 2 (ch 2 n - sin20 = 1c 2 (ch 2 7 7 +cos 2?).

• The isothermals are approximately equilateral hyperbolas (pv= constant), with the axes of p and v for asymptotes, for a gas or unsaturated vapour, but coincide with the isopiestics for a saturated vapour in presence of its liquid.

• The genera may be arranged as follows: 1,2,3,4 redundant hyperbolas 5,6 defective hyperbolas 7,8 parabolic hyperbolas 9 hyperbolisms of hyperbola To „ II „ „ parabola 12 trident curve 13 divergent parabolas 14 cubic parabola; and thus arranged they correspond to the different relations of the line infinity to the curve.

• First, if the three intersections by the line infinity are all distinct, we have the hyperbolas; if the points are real, the redundant hyperbolas, with three hyperbolic branches; but if only one of them is real, the defective hyperbolas, with one hyperbolic branch.

• Secondly, if two of the intersections coincide, say if the line infinity meets the curve in a onefold point and a twofold point, both of them real, then there is always one asymptote: the line infinity may at the twofold point touch the curve, and we have the parabolic hyperbolas; or the twofold point may be a singular point, - viz., a crunode giving the hyperbolisms of the hyperbola; an acnode, giving the hyperbolisms of the ellipse; or a cusp, giving the hyperbolisms of the parabola.

• It is to be remarked that the classification mixes together non-singular and singular curves, in fact, the five kinds presently referred to: thus the hyperbolas and the divergent parabolas include curves of every kind, the separation being made in the species; the hyperbolisms of the hyperbola and ellipse, and the trident curve, are nodal; the hyperbolisms of the parabola, and the cubical parabola, are cuspidal.