Don't drink the wine and don't let the cat in X's room, Jessi read aloud.

Rule two, escort X's girls out every morning.

X's woman just pulled the wool over his eyes.

From the differential coefficients of the y's with regard to the x's we form the functional.

Consider then the system of ni equations a21xi+a22x2+ï¿½ï¿½ï¿½ + a2nxn = 0 a31x1+a32x2+ï¿½ï¿½ï¿½+a3nx,, =0 an1x1 + an2x2 + ï¿½ ï¿½ ï¿½ +annxn = 0, which becomes on writing **xs** = y 8, a21y1+ a 22y2 + ï¿½ ï¿½ ï¿½ + a 2,n-lyn-1 + a 2n = 0 a3lyl +a32y2+ï¿½ï¿½ï¿½ +a3,n-lyn-i+a3n =0 an1 y1 +an2y2 +ï¿½ï¿½ï¿½ +an, n-lyn-1 +ann = 0.

Beginning with a single body in liquid extending to infinity, and denoting by U, V, W, P, Q, R the components of linear and angular velocity with respect to axes fixed in the body, the velocity function takes the form = Ucb1+V42+W43+ P xi+Qx2+Rx3, (I) where the 0's and x's are functions of x, y, z depending on the shape of the body; interpreted dynamically, C -p0 represents the impulsive pressure required to stop the motion, or C +p4) to start it again from rest.

The determination of the O's and x's is a kinematical problem, solved as yet only for a few cases, such as those discussed above.