## Wrench Sentence Examples

- P is a rotor and coo- a vector), is called a motor, and has the geometrical significance of Ball's
**wrench**upon, or twist about, a screw. - Inserted between the scales or into the pome, but on opening the mouth still more widely, the lateral motion of the mandible is once more brought to bear with great force to
**wrench**aside the portion of the fruit attacked, and then the action of the tongue completes the operation, which is so rapidly performed as to defy scrutiny, except on very close inspection. - Conversely it is seen that any
**wrench**can be replaced in an infinite number of ways by two forces, and that the line of action of one of these may be chosen quite arbitrarily. - Again, that
of arbitrary amounts about two given screws compound into a**wrenches****wrench**the locus of whose axis is a cylindroid. - The mathematical properties of a twist or of a
**wrench**have been the subject of many remarkable investigations, which are, however, of secondary importance from a physical point of view. - It appears also from (II) that the null-lines whose distance from the central axis is r are tangent lines to a system of helices of slope tan 1(r/k); and it is to be noticed that these helices are left-handed if the given
**wrench**is righthanded, and vice versa. - Since the given
**wrench**can be replaced by a force acting through any assigned point P, and a couple, the locus of the null-lines through P is a plane, viz, a plane perpendicular to the vector which represents the couple. - Again, any plane w is the locus of a system of null-lines meeting in a point, called the null-point of c. If a plane revolve about a fixed straight line p in it, its ntill-point describes another straight line p, which is called the conjugate line of p. We have seen that the
**wrench**may be replaced by two forces, one of which may act in any arbitrary line p. It is now evident that the second force must act in the conjugate line p, since every line meeting p, p is a null-line. - If we take any polyhedron with plane faces, the null-planes of its vertices with respect to a given
**wrench**will form another polyhedron, and the edges of the latter will be conjugate (in the above sense) to those of the former. - Since a
**wrench**is defined by six independent quantities, it can in general be replaced by~ any system of forces which involves six adjustable elements. - If we imagine a rigid body to be acted on at given points by forces of given magnitudes in directions (not all parallel) which are fixed in space, then as the body is turned about the resultant
**wrench**will assume different configurations in the body, and will in certain positions reduce to a single force. - This expression gives the work done by a given
**wrench**when the body receives a given infinitely small twist; it must of course be an absolute invariant for all transformations of rectangular axe~. - 48 let R, G be the force and couple of the
**wrench**,, r the rotation and translation in the twist. **Wrench**and the twist be inclined at an angle 0, and let h be the shortest distance between them.- The factor (P+P) cos 0h sin 0 is called the vIrtual coefficient of the two screws which define the types of the
**wrench**and twist, respectively. - If a line is a null-line with respect to the
**wrench**(X, Y, Z, L, M, N), the work done in an infinitely small rotation about it is zero, and its coordinates are accordingly subject to the further relation Lf+M~+Nl+XX+Yp+Zvo, (5~