## Magnitudes Sentence Examples

- The
**magnitudes**, on the other hand, which we meet with in geometry, are essentially continuous. - The divisibility of
**magnitudes**; imaginary, where it cannot, e.g. - An interesting member of this constellation is a-Capricorni, a pair of stars of 3rd and 4th
**magnitudes**, each of which has a companion of the 9th magnitude. - Interesting objects in this constellation are: a Geminorum or Castor, a very fine double star of
**magnitudes**2.0 and 2.8, the fainter component is a spectroscopic binary; i Geminorum, a long period (231 days) variable, the extreme range in magnitude being 3.2 to 4; Geminorum, a short period variable, 10.15 days, the extreme range in magnitude being 3.7 to 4.5; Nova Geminorum, a "new" star discovered in 1903 by H. - This is the open place on which a power that commands in the name of this meaning can exert its influence; and if under this command the inner condition of the elements, the
**magnitudes**of their relation and their opposition to each other, become altered, the necessity of the mechanical cause of the world must unfold this new state into a miraculous appearance, not through suspension but through strict maintenance of its general laws " (op. cit. - The measure of the loss of symmetry associated with the introduction of alkyl groups depends upon the relative
**magnitudes**of the substituent group and the rest of the molecule; and the larger the molecule, the less would be the morphotropic effect of any particular substituent. - These show the
**magnitudes**of the layers of different salinity and temperature beneath the surface, and when a number of sections are compared the differences from season to season and from year to year can be seen. - 1111 The Number Of Such Terms Is The Number Of Partitions Of W Into 0 0 Parts, The Part
**Magnitudes**, In The Two Portions, Being Limited Not To Exceed P And Q Respectively. - One of the fragments may again be broken, and again two bipolar magnets will be produced; and the operation may be repeated, at least in imagination, till we arrive at molecular
**magnitudes**and can go no farther. - Three collinear stars ?', c and 3 Orionis constitute the "belt of Orion"; of these E, the central star, is of the ist magnitude, 3 of the 2nd, while Orionis is a fine double star, its components having
**magnitudes**2 and 6; there is also a faint companion of magnitude io. - While mensuration is concerned with the representation of geometrical
**magnitudes**by numbers, graphics is concerned with the representation of numerical quantities by geometrical figures, and particularly by lengths. - The graphic method may therefore be used in arithmetic for comparing two particular
**magnitudes**of the same kind by comparing the corresponding lengths P and Q measured along a single line OX from the same point O. - Although this transition from the discontinuous to continuous is not truly scientific, yet it materially augmented the development of algebra, and Hankel affirms that if we define algebra as the application of arithmetical operations to both rational and irrational numbers or
**magnitudes**, then the Brahmans are the real inventors of algebra. - To get an idea of the
**magnitudes**of the quantities involved, let us take the case of an aperture of 1 in., about that of the pupil of the eye. - His streets were to be of three
**magnitudes-**90 ft., 60 ft. - If p is the density corresponding to pressure p, we find that,}, formula (Ii) assumes the form P = 3PC2, where C is a velocity such that the gas would have its actual translational energy if each molecule moved with the same velocity C. By substituting experimentally determined pairs of values of p and p we can calculate C for different gases, and so obtain a knowledge of the
**magnitudes**of the molecular velocities. - His only extant work is a short treatise (with a commentary by Pappus) On the
**Magnitudes**and Distances of the Sun and Moon. - The direct measurement of certain
**magnitudes**(usually lengths) in terms of a unit, and the application of a formula for determining the area or volume from these data. - It is also convenient to regard as coming under mensuration the consideration of certain derived
**magnitudes**, such as the moment of a plane figure with regard to a straight line in its plane, the calculation of w]iich involves formulae which are closely related to formulae for determining areas and volumes. - This use of formulae for dealing with numbers, which express
**magnitudes**in terms of units, constitutes the broad difference between mensuration and ordinary geometry, which knows nothing of units. - As a result of the importance both of the formulae obtained by elementary methods and of those which have involved the previous use of analysis, there is a tendency to dissociate the former, like the latter, from the methods by which they have been obtained, and to regard mensuration as consisting of those mathematical formulae which are concerned with the measurement of geometrical
**magnitudes**(including lengths), or, in a slightly wider sense, as being the art of applying these formulae to specific cases. - These last two steps may introduce
**magnitudes**which have to be subtracted, and which therefore have to be treated as negative quantities in the arithmetical. - Let E and F be two
**magnitudes**so related that whenever F has any value (within certain limits) E has a definite corresponding value. - Let u and x be the numerical expressions of the
**magnitudes**of E and F. - The corresponding solid figure, in its most general form, is such as would be constructed to represent the relation of a magnitude E to two
**magnitudes**F and G of which it is a function; it would stand on a plane base, and be comprised within a cylindrical boundary whose cross-section might be of any shape. - The volume of a frustum of a cone, for instance, can be expressed in terms of certain
**magnitudes**by a certain formula; but not only will there be some error in the measurement of these**magnitudes**, but there is not any material figure which is an exact cone. - In the case of a trapezette, for instance, the data are the
**magnitudes**of certain ordinates; the problem of interpolation is to determine the values of intermediate ordinates, while that of mensuration is to determine the area of the figure of which these are the ordinates. - Ursae majoris is a beautiful binary star, its components having
**magnitudes**4 and 5; this star was one of the first to be recognized as a binary - i.e. - The first important work undertaken with it was a revision of the
**magnitudes**given in the Bonn Durchmusterung. - The
**magnitudes**of nearly 8000 southern stars were determined, including 1428 stars of the 6th magnitude and brighter. - Corum, a double star, of
**magnitudes**3 and 6; this star was named Cor Caroli, or The Heart of Charles II., by Edmund Halley, on the suggestion of Sir Charles Scarborough (1616-1694), the court physician; a cluster of stars of the firth magnitude and fainter, extremely rich in variables, of the goo stars examined no less than 132 being regularly variable. - The
**magnitudes**of the maximum shearing stresses are indicated by the algebraic differences of the thicknesses of the lines of principal stress. - The relative importance of two harmonic disturbances depends upon their initial
**magnitudes**, and upon the rate at which they grow. - Then Ob is the velocity of the point b in magnitude and direction, and cb is the tangential velocity of B relatively to C. Moreover, whatever be the actual
**magnitudes**of the velocities, the instantaneous velocity ratio of the points C and B is given by the ratio Oc/Ob. - Angles to Ct; then the vector sum of these three
**magnitudes**is Ab, and this vectol represents the acceleration of the point B. - Variable Effort and Resistance.Jf an effort has different
**magnitudes**during different portions of the motion of its point of application through a given distance, let each different magnitude of the effort P be multiplied by the length Lts of the corresponding portion of the path of the point of application; the sum ~. - * Method of computing the position and
**magnitudes**of balance weights which must be added to a given system of arbitrarily chosen rotating masses in order to make the common axis of rotation a permanent axis.The method here briefly explained, is taken from a paper by W. - Because the resistances to displacement are the effect of a strained state of the pieces, which strained state is the effect of the load, and when the load is applied the strained state and the resistances produced by it increase until the resistances acquire just those
**magnitudes**which are sufficient to balance the load, after which they increase no further. - At the joint between the pieces to which the two loads reprfsented by the contiguous sides of the polygon of loads (such as L1, L2, &c.) are applied; then will all those lines meet in one point (0), and their lengths, measured from that point to the angles of Ike polygon, will represent the
**magnitudes**of the resistances to which they are respectively parallel. - To find their absolute directioru and
**magnitudes**, a vertical line is to be drawn in the first figure, o: - It consists of two elements, the velocity ratio, which is the ratio of any two
**magnitudes**bearing to each other the proportions of the respective velocities of the two points at a given instant, and the directional relation, which is the relation borne to each other by the respective directions of the motions of the two points at the same given instant. - The relation between the advance and the rotation, which compose the motion of a screw working in contact with a fixed screw or helical guide, has already been demonstrated in 32; and the same relation exists between the
**magnitudes**of the rotation of a screw about a fixed axis and the advance of a shifting nut in which it rotates.