Under the general heading "Geometry" occur the subheadings "Foundations," with the topics principles of geometry, non-Euclidean geometries, hyperspace, methods of analytical geometry; "Elementary Geometry," with the topics planimetry, stereometry, trigonometry, descriptive geometry; "Geometry of Conics and Quadrics," with the implied topics; "Algebraic Curves and Surfaces of Degree higher than the Second," with the implied topics; "Transformations and General Methods for Algebraic Configurations," with the topics collineation, duality, transformations, correspondence, groups of points on algebraic curves and surfaces, genus of curves and surfaces, **enumerative** geometry, connexes, complexes, congruences, higher elements in space, algebraic configurations in hyperspace; "Infinitesimal Geometry: applications of Differential and Integral Calculus to Geometry," with the topics kinematic geometry, curvature, rectification and quadrature, special transcendental curves and surfaces; "Differential Geometry: applications of Differential Equations to Geometry," with the topics curves on surfaces, minimal surfaces, surfaces determined by differential properties, conformal and other representation of surfaces on others, deformation of surfaces, orthogonal and isothermic surfaces.

Mill holds even the ideas of mathematics to be hypothetical, and in theory knows nothing of a non-**enumerative** or non-associative universal.

It rested these in turn upon a general induction **enumerative** in character of enormous and practically infinite range and always uncontradicted.