## BC Sentence Examples

- For example, rae Arenarion in one climatic or geographical region might be in~~ med an a-Arenarion and one in a different region a a-Arena- ~j1j ri, and so on (Moss,
**bc**. cit.). - It consists of two branches AC and
**BC**, which meet in a lowest point C. It will be seen that as we increase the percentage of B from nothing up to that of the mixture C, the freezing-point becomes lower and lower, but that if we further increase the percentage of B in the mixture, the freezing-point rises. - (3) Expansion or compression at constant temperature, represented by curves called Isothermals, such as
**BC**, AD, the form of which depends on the nature of the working sub stance. - A cycle such as ABCD enclosed by parts of two isothermals,
**BC**, AD, and two adiabatics, AB, CD, is the simplest form of cycle for theoretical purposes, since all the heat absorbed, H', is taken in during the process represented by one isothermal at the temperature o', and all the heat rejected, H", is given out during the process represented by the other at the temperature 0". - The Third Servile War occurred in the Roman Republic from 73
**BC**to 71**BC**. - 2, let
**BC**be a small portion of any isothermal corresponding to the temperature 0', and AD a neighbouring isothermal 0". - Let BE be an isometric through B meeting AD in E, and EC an isopiestic through E meeting
**BC**in C. Let BA, CD be adiabatics through B and C meeting the isothermal 0" in A and D. - Saturated vapour), in which it occupies a volume v", the line
**BC**represents the change of volume (v" - v'). - Put M 1 For M, N I For N, And Multiply Through By (Ab); Then { (F, C6) } = (Ab) A X 2A Y B X 1 M N I 2 (Xy), ?) 2, = (A B)Ax 1B X 2B Y L I Multiply By Cp 1 And For Y L, Y2 Write C 2, C1; Then The Right Hand Side Becomes (Ab)(
**Bc**)Am Lbn 2Cp 1 M I C P (F?) 2 M { N2 X, Of Which The First Term, Writing C P =, ,T, Is Mn 2 A B (Ab)(**Bc**)Axcx 1 M 2 N 2 P 2 2222 2 2 _2 A X B X C (**Bc**) A C Bx M N 2 2 2 M2°N 2 N 2 M 2 2 A X (**Bc**) B C P C P (Ab) A B B(Ac) Ax Cp 2 = 2 (04) 2 1 (F,0) 2.4 (F,Y') 2 ï¿½?; And, If (F,4)) 1 = Km " 2, (F??) 1 1 M N S X X X Af A _Af A Ax, Ax Ax Ax1 Observing That And This, On Writing C 2, C 1 For Y 11 Y 21 Becomes (Kc) K X 'T 3C X 1= (F,0 1 ', G 1; ï¿½'ï¿½1(F,O) 1 M 1=1 M 2 0`,4)) 2 0, T (Fm 2.4 (0,0 2 .F ' And Thence It Appears That The First Transvectant Of (F, (P) 1 Over 4) Is Always Expressible By Means Of Forms Of Lower Degree In The Coefficients Wherever Each Of The Forms F, 0, 4, Is Of Higher Degree Than The First In X 1, X2. - Money order cards are very convenient and cheap (up to 10 lire for
**bc**. short private message can be written on them. - The Binary Cubic.-The complete system consists of f=aa,(f,f')'=(ab)2a b =0 2, (f 0)= (ab) 2 (ca)b c=Q3, x x x x x x and (0,0')2 (ab) 2 (cd) 2 (ad) (
**bc**) = R. - If ai, bx, cx be different forms we obtain, after development of the squared determinant and conversion to the real form (employing single and double dashes to distinguish the real coefficients of bx and cz), a(b'c"+b"c'-2 f'f") +b(c'a"+c"a'-2g'g") +c(a' +a"b'-2h'h")+2f(g'h"+g"h'-a' + 2g (h ' f"+h"f'-b'g"-b"g')+2h(f'g"+f"g'-c'h"-c"h'); a simultaneous invariant of the three forms, and now suppressing the dashes we obtain 6 (abc+2fgh -af t - bg 2 -ch2), the expression in brackets being the S well-known invariant of az, the vanishing of which expresses the condition that the form may break up into two linear factors, or, geometrically, that the conic may represent two right lines.
- Of 6a 5
**bc**2 and 12a 4 b 2 cd we mean the H.C.F. - Thus a(b+c) and (b+c)a give the same result, though it may be written in various ways, such as abdac, ca+ab, &c. In the same way the associative law is that A(
**BC**) and (AB)C give the same formal result. - Let P, Q denote the normal thrust across the sides
**bc**, ca, and R the normal thrust across the base ab. - But the faces
**bc**, ca, over which P and Q act, are also equal, so that the pressure on each face is equal. - Radii are drawn from the centre of the quadrant to the points of division of the arc, and these radii are intersected by the lines drawn parallel to
**BC**and through the corresponding points on the radius AB. - Represented by a point P, so chosen that the perpendicular Pa on to the side
**BC**gives the percentage of A in the alloy, and the perpendiculars Pb and Pc give the percentages of B and C respectively. - Then by relations (2) the heat, H, absorbed in the isothermal change
**BC**, is to the work, W, done in the cycle ABCD in the ratio of o to (o' - o"). - It is not necessary in this example that AB, CD should be adiabatics, because the change of volume
**BC**is finite. - EF is the change of volume corresponding to a change of pressure BE when no heat is allowed to escape and the path is the adiabatic BF, EC is the change of volume for the same change of pressure BE when the path is the isothermal
**BC**. These changes of volume are directly as the compressibilities, or inversely as the elasticities. - 19) represent a gun at height BD above water-level DC, elevated to such an angle that a shot would strike the water at C. Draw EB parallel to DC. It is clear that under these conditions, if a tangent sight AF be raised to a height F representing the elevation due to the range
**BC**, the object C will be on the line of sight. - Of the base are the projections of the sides AB,
**BC**, CD,. - 7 let base
**BC**=2a, and let h be the distance, measured at right angles to**BC**, from the middle point of**BC**to AD. - By drawing Ac and Ad parallel to
**BC**and BD, so as to meet the plane through CD in c and d, and producing QP and RS to meet Ac and Ad in q and r, we see that the area of Pqrs is (x/h - x 2 /h 2) X area of cCDd; this also is a quadratic function of x. - Thus the interval b'c" with frequencies 495 and 528, giving 33 beats in a second, is very dissonant.
- But the interval b
**bc**" gives nearly twice as many beats and is not nearly so dissonant. - Again b'c" and CG have each 33 beats per second, yet the latter interval is practically smooth and consonant.
- If these are first drawn it is easy, for any position of the loads, to draw the lines B'C, B'D, B'E, and to find the sum of the intercepts which is the total bending moment under a load.
- Try/-Book of
**Bc**/any, by 11cr- aceae, &c.); t2) ~aticzferous vessels ~fig. - We may write (AB)i(AC)j(
**BC**)k... - (iii) If = o, so that AD is parallel to
**BC**, it becomes area = 2ah+ 2 (cot cot ct,)h2. - It will be observed that the areas representing H and W both depend on the form of the path
**BC**, but that the difference of the areas representing the change of intrinsic energy dE is independent of**BC**, which is a boundary common to both H and W. - Of a 5
**bc**2 and a 4 b 2 cd. - Is a 4
**bc**and the L.C.M. - To assist us in handling the symbolic products we have not only the identity (ab) cx + (
**bc**) a x + (ca) bx =0, but also (ab) x x+ (b x) a + (ax) b x = 0, (ab)a+(**bc**)a s +(ca)a b = 0, and many others which may be derived from these in the manner which will be familiar to students of the works of Aronhold, Clebsch and Gordan. - (IV.) and herein writing d 2, -d 1 for x l, x2, 2 (ac) (
**bc**) (ad) (bd) = (**bc**) 2 (ad) 2 +(ac) 2 (bd) 2 - (ab) 2 (cd) 2. - For two factors the standard form is (ab) 2; for three factors (ab) 2 (ac); for four factors (ab) 4 and (ab) 2 (cd) 2; for five factors (ab) 4 (ac) and (ab) 2 (ac)(de) 2; for six factors (ab) 6, (ab) 2 (
**bc**) 2 (ca) 2, and (ab) 2 (cd) 2 (ef) 2 .