# Adiabatic Sentence Examples

- If the substance in any state such as B were allowed to expand
**adiabatically**(dH = o) down to the absolute zero, at which point it contains no heat and exerts no pressure, the whole of its available heat energy might theoretically be recovered in the form of external work, represented on the diagram by the whole area BAZcb under the**adiabatic**through the state-point B, bounded by the isometric Bb and the zero isopiestic bV. - Even if the expansion is
**adiabatic**, in the sense that it takes place inside a non-conducting enclosure and no heat is supplied from external sources, it will not be isentropic, since the heat supplied by internal friction must be included in reckoning the change of entropy. - If, starting from E, the same amount of heat h is restored at constant pressure, we should arrive at the point F on the
**adiabatic**through B, since the substance has been transformed from B to F by a reversible path without loss or gain of heat on the whole. - EF is the change of volume corresponding to a change of pressure BE when no heat is allowed to escape and the path is the
**adiabatic**BF, EC is the change of volume for the same change of pressure BE when the path is the isothermal BC. These changes of volume are directly as the compressibilities, or inversely as the elasticities. - Along the
**adiabatic**, which can be integrated, giving the equations to the, provided that the values of the specific heats and expansion-coefficients are known.**adiabatics** - The isothermal elasticity - v(dp/dv) is equal to the pressure p. The
**adiabatic**elasticity is equal to y p, where -y is the ratio S/s of the specific heats. - In thiscase the ratio of the specific heats is constant as well as the difference, and the
**adiabatic**equation takes the simple form, pv v = constant, which is at once obtained by integrating the equation for the**adiabatic**elasticity, - v(dp/dv) =yp. - If we assume that s is a linear function of 0, s= so(I +aO), the
**adiabatic**equation takes the form, s 0 log e OW +aso(0 - Oo) +R loge(v/vo) =o - (14) where (00,v), (e 0, vo) are any two points on the
**adiabatic**. The corresponding expressions for the change of energy or total heat are obtained by adding the term 2as 0 (02-002) to those already given, thus: E - Eo = so (0-00) + 2 aso (02-002), F - Fo=S0(0-00) + zaso (02-002), where So= so+R. - I) to any other
**adiabatic**0", the quotient H/o of the heat absorbed by the temperature at which it is absorbed is the same for the same twowhatever the temperature of the isothermal path.**adiabatics** - In passing along an
**adiabatic**there is no change of entropy, since no heat is absorbed. - If the tube is a perfect non-conductor, and if there are no eddies or frictional dissipation, the state of the substance at any point of the tube as to E, p, and v, is represented by the
**adiabatic**or isentropic path, dE= -pdv. - I by the whole area B"DZ'VO under the isothermal 9"D and the
**adiabatic**DZ', bounded by the axes of pressure and volume. - The intrinsic energy, E, is similarly represented by the area DZ'Vd under the
**adiabatic**to the right of the isometric Dd. - K, k,
**Adiabatic**and isothermal elasticities. - That is to say, instead of using Boyle's law, which supposes that the pressure changes so exceedingly slowly that conduction keeps the temperature constant, we must use the
**adiabatic**relation p = kpy, whence d p /d p = y k p Y 1= yp/p, and U = (yp/p) [Laplace's formula]. - 142) showed that a very small departure from the
**adiabatic**condition would lead to a stifling of the sound quite out of accord with observation. - Assuming, however, that the agreement is close enough for practical requirement, the conbustion of the cordite may be considered complete at this stage P, and in the subsequent expansion it is assumed that the gas obeys an
**adiabatic**law in which the pressure varies inversely as some mtn power of the volume. - The Direct Methods Of Measuring The Ratio S/S, By The Velocity Of Sound And By
**Adiabatic**Expansion, Are Sufficiently Described In Many Text Books. - 10, P. 349, 1867) investigated the form of the
**adiabatic**for steam passing through the state p= 760 mm., 0=373° Abs., by observing the pressure of superheated steam at any temperature which just failed to produce a cloud on sudden expansion to atmospheric pressure. - The assumption n=s/R simplifies the
**adiabatic**equation, but the value n=3.5 gives So =0.497 at zero pressure, which was the value found by Callendar experimentally at 108° C. and 1 atmosphere pressure. - A vapour compression machine does not, however, work precisely in the reversed Carnot cycle, inasmuch as the fall in temperature between the condenser and the refrigerator is not produced, nor is it attempted to be produced, by the
**adiabatic**expansion of the agent, but results from the evaporation of a portion of the liquid itself. - If we write K for the
**adiabatic**elasticity, and k for the isothermal elasticity, we obtain S/s = ECÃ†F = K/k.